×

Computational methods for martingale optimal transport problems. (English) Zbl 1433.49043

Summary: We develop computational methods for solving the martingale optimal transport (MOT) problem – a version of the classical optimal transport with an additional martingale constraint on the transport’s dynamics. We prove that a general, multi-step multi-dimensional, MOT problem can be approximated through a sequence of linear programming (LP) problems which result from a discretization of the marginal distributions combined with an appropriate relaxation of the martingale condition. Further, we establish two generic approaches for discretising probability distributions, suitable respectively for the cases when we can compute integrals against these distributions or when we can sample from them. These render our main result applicable and lead to an implementable numerical scheme for solving MOT problems. Finally, specialising to the one-step model on real line, we provide an estimate of the convergence rate which, to the best of our knowledge, is the first of its kind in the literature.

MSC:

49M25 Discrete approximations in optimal control
60H99 Stochastic analysis
90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
60G46 Martingales and classical analysis
49Q99 Manifolds and measure-geometric topics

References:

[1] Alfonsi, A., Corbetta, J. and Jourdain, B. (2019). Sampling of one-dimensional probability measures in the convex order and computation of robust option price bounds. Int. J. Theor. Appl. Finance 22 1950002, 41. · Zbl 1411.91535 · doi:10.1142/S021902491950002X
[2] Backhoff-Veraguas, J. and Pammer, G. (2019). Stability of martingale optimal transport and weak optimal transport. Available at arXiv:1904.04171. · Zbl 1469.60125 · doi:10.1007/s00526-019-1624-y
[3] Beiglböck, M., Henry-Labordère, P. and Penkner, F. (2013). Model-independent bounds for option prices—A mass transport approach. Finance Stoch. 17 477-501. · Zbl 1277.91162 · doi:10.1007/s00780-013-0205-8
[4] Beiglböck, M. and Juillet, N. (2016). On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44 42-106. · Zbl 1348.49045 · doi:10.1214/14-AOP966
[5] Beiglböck, M., Lim, T. and Obłój, J. (2019). Dual attainment for the martingale transport problem. Bernoulli 25 1640-1658. · Zbl 1470.49071 · doi:10.3150/17-BEJ1015
[6] Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 375-393. · Zbl 0968.76069 · doi:10.1007/s002110050002
[7] Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L. and Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37 A1111-A1138. · Zbl 1319.49073 · doi:10.1137/141000439
[8] Bonnans, J. F. and Tan, X. (2013). A model-free no-arbitrage price bound for variance options. Appl. Math. Optim. 68 43-73. · Zbl 1272.93135 · doi:10.1007/s00245-013-9197-1
[9] Breeden, D. T. and Litzenberger, R. H. (1978). Prices of state-contingent claims implicit in option prices. J. Bus. 51 621-51.
[10] Brown, H., Hobson, D. and Rogers, L. C. G. (2001). Robust hedging of barrier options. Math. Finance 11 285-314. · Zbl 1047.91024 · doi:10.1111/1467-9965.00116
[11] Chacon, R. V. (1977). Potential processes. Trans. Amer. Math. Soc. 226 39-58. · Zbl 0366.60106 · doi:10.1090/S0002-9947-1977-0501374-5
[12] Claisse, J., Guo, G. and Henry-Labordère, P. (2018). Some results on Skorokhod embedding and robust hedging with local time. J. Optim. Theory Appl. 179 569-597. · Zbl 1402.60046 · doi:10.1007/s10957-017-1201-5
[13] Cox, A. M. G. and Obłój, J. (2011). Robust hedging of double touch barrier options. SIAM J. Financial Math. 2 141-182. · Zbl 1228.91067 · doi:10.1137/090777487
[14] Cox, A. M. G. and Obłój, J. (2011). Robust pricing and hedging of double no-touch options. Finance Stoch. 15 573-605. · Zbl 1303.91171 · doi:10.1007/s00780-011-0154-z
[15] Davis, M., Obłój, J. and Raval, V. (2014). Arbitrage bounds for prices of weighted variance swaps. Math. Finance 24 821-854. · Zbl 1314.91209 · doi:10.1111/mafi.12021
[16] De March, H. and Touzi, N. (2019). Irreducible convex paving for decomposition of multidimensional martingale transport plans. Ann. Probab. 47 1726-1774. · Zbl 1467.60028 · doi:10.1214/18-AOP1295
[17] Delattre, S., Fort, J.-C. and Pagès, G. (2004). Local distortion and \(\mu \)-mass of the cells of one dimensional asymptotically optimal quantizers. Comm. Statist. Theory Methods 33 1087-1117. · Zbl 1114.62316
[18] Dolinsky, Y. and Soner, H. M. (2014). Martingale optimal transport and robust hedging in continuous time. Probab. Theory Related Fields 160 391-427. · Zbl 1305.91215 · doi:10.1007/s00440-013-0531-y
[19] Fournier, N. and Guillin, A. (2015). On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 707-738. · Zbl 1325.60042 · doi:10.1007/s00440-014-0583-7
[20] Galichon, A., Henry-Labordère, P. and Touzi, N. (2014). A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24 312-336. · Zbl 1285.49012 · doi:10.1214/13-AAP925
[21] Genevay, A., Cuturi, M., Peyré, G. and Bach, F. (2018). Stochastic optimization for large-scale optimal transport. In NIPS’16 Proceedings of the 30th International Conference on Neural Information Processing Systems 3440-3448.
[22] Ghoussoub, N., Kim, Y.-H. and Lim, T. (2019). Structure of optimal martingale transport plans in general dimensions. Ann. Probab. 47 109-164. · Zbl 1447.60070 · doi:10.1214/18-AOP1258
[23] Graf, S. and Luschgy, H. (2000). Foundations of Quantization for Probability Distributions. Lecture Notes in Math. 1730. Springer, Berlin. · Zbl 0951.60003
[24] Graf, S., Luschgy, H. and Pagès, G. (2008). Distortion mismatch in the quantization of probability measures. ESAIM Probab. Stat. 12 127-153. · Zbl 1196.60062
[25] Guo, G. (2018). A stability result on optimal Skorokhod embedding. Available at arXiv:1701.08204.
[26] Henry-Labordère, P. (2013). Automated option pricing: Numerical methods. Int. J. Theor. Appl. Finance 16 1350042, 27. · Zbl 1296.91281 · doi:10.1142/S0219024913500428
[27] Hobson, D. (1998). Robust hedging of the lookback option. Finance Stoch. 2 329-347. · Zbl 0907.90023 · doi:10.1007/s007800050044
[28] Hobson, D. and Klimmek, M. (2015). Robust price bounds for the forward starting straddle. Finance Stoch. 19 189-214. · Zbl 1396.91735 · doi:10.1007/s00780-014-0249-4
[29] Hobson, D. and Neuberger, A. (2012). Robust bounds for forward start options. Math. Finance 22 31-56. · Zbl 1278.91162 · doi:10.1111/j.1467-9965.2010.00473.x
[30] Hou, Z. and Obłój, J. (2018). Robust pricing-hedging dualities in continuous time. Finance Stoch. 22 511-567. · Zbl 1402.91789 · doi:10.1007/s00780-018-0363-9
[31] Juillet, N. (2016). Stability of the shadow projection and the left-curtain coupling. Ann. Inst. Henri Poincaré Probab. Stat. 52 1823-1843. · Zbl 1356.60067 · doi:10.1214/15-AIHP700
[32] Lévy, B. (2015). A numerical algorithm for \(L_2\) semi-discrete optimal transport in 3D. ESAIM Math. Model. Numer. Anal. 49 1693-1715. · Zbl 1331.49037
[33] Lim, T. (2017). Multi-martingale optimal transport. Available at arXiv:1611.01496.
[34] Obłój, J. and Siorpaes, P. (2017). Structure of martingale transports in finite dimensions. Available at arXiv:1702.08433.
[35] Rachev, S. T. and Rüschendorf, L. (1998). Mass Transportation Problems. Vol. II. Applications. Probability and Its Applications. Springer, New York. · Zbl 0990.60500
[36] Skorohod, A. V. (1976). On a representation of random variables. Teor. Veroyatn. Primen. 21 645-648. · Zbl 0362.60004
[37] Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Stat. 36 423-439. · Zbl 0135.18701 · doi:10.1214/aoms/1177700153
[38] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin. · Zbl 1156.53003
[39] Wiesel, J. (2019). Continuity of the martingale optimal transport problem on the real line. Available at arXiv:1905.04574.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.