zbMATH — the first resource for mathematics

Robust pricing and hedging around the globe. (English) Zbl 1435.60031
Summary: We consider the martingale optimal transport duality for càdlàg processes with given initial and terminal laws. Strong duality and existence of dual optimizers (robust semistatic superhedging strategies) are proved for a class of payoffs that includes American, Asian, Bermudan and European options with intermediate maturity. We exhibit an optimal superhedging strategy for which the static part solves an auxiliary problem and the dynamic part is given explicitly in terms of the static part.

60G44 Martingales with continuous parameter
49N05 Linear optimal control problems
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI Euclid
[1] Aksamit, A., Deng, S., Obłój, J. and Tan, X. (2019). The robust pricing-hedging duality for American options in discrete time financial markets. Math. Finance 29 861-897. · Zbl 1432.91116
[2] Bayraktar, E., Cox, A. M. G. and Stoev, Y. (2018). Martingale optimal transport with stopping. SIAM J. Control Optim. 56 417-433. · Zbl 1405.60053
[3] Bayraktar, E., Huang, Y.-J. and Zhou, Z. (2015). On hedging American options under model uncertainty. SIAM J. Financial Math. 6 425-447. · Zbl 1315.91060
[4] Bayraktar, E. and Zhou, Z. (2017). On arbitrage and duality under model uncertainty and portfolio constraints. Math. Finance 27 988-1012. · Zbl 1411.91541
[5] Bayraktar, E. and Zhou, Z. (2017). Super-hedging American options with semi-static trading strategies under model uncertainty. Int. J. Theor. Appl. Finance 20 1750036, 10. · Zbl 1396.91716
[6] Beiglböck, M., Henry-Labordère, P. and Penkner, F. (2013). Model-independent bounds for option prices—a mass transport approach. Finance Stoch. 17 477-501. · Zbl 1277.91162
[7] Beiglböck, M. and Juillet, N. (2016). On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44 42-106. · Zbl 1348.49045
[8] Beiglböck, M., Nutz, M. and Touzi, N. (2017). Complete duality for martingale optimal transport on the line. Ann. Probab. 45 3038-3074. · Zbl 1417.60032
[9] Chacon, R. V. (1977). Potential processes. Trans. Amer. Math. Soc. 226 39-58. · Zbl 0366.60106
[10] Chacon, R. V. and Walsh, J. B. (1976). One-dimensional potential embedding. In Séminaire de Probabilités X. Lecture Notes in Math. 511 19-23. Springer, Berlin. · Zbl 0329.60041
[11] Cox, A. M. G. (2008). Extending Chacon-Walsh: Minimality and generalised starting distributions. In Séminaire de Probabilités XLI. Lecture Notes in Math. 1934 233-264. Springer, Berlin. · Zbl 1165.60019
[12] Cox, A. M. G. and Källblad, S. (2017). Model-independent bounds for Asian options: A dynamic programming approach. SIAM J. Control Optim. 55 3409-3436. · Zbl 1415.91280
[13] Dolinsky, Y. and Soner, H. M. (2014). Martingale optimal transport and robust hedging in continuous time. Probab. Theory Related Fields 160 391-427. · Zbl 1305.91215
[14] Dolinsky, Y. and Soner, H. M. (2015). Martingale optimal transport in the Skorokhod space. Stochastic Process. Appl. 125 3893-3931. · Zbl 1337.91092
[15] Galichon, A., Henry-Labordère, P. and Touzi, N. (2014). A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24 312-336. · Zbl 1285.49012
[16] Hobson, D. (1998). Robust hedging of the lookback option. Finance Stoch. 2 329-347. · Zbl 0907.90023
[17] Hobson, D. (2011). The Skorokhod embedding problem and model-independent bounds for option prices. In Paris-Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Math. 2003 267-318. Springer, Berlin. · Zbl 1214.91113
[18] Hobson, D. and Neuberger, A. (2016). More on the hedging of American options under model uncertainty. Preprint. Available at arXiv:1604.02274v1.
[19] Hobson, D. and Neuberger, A. (2017). Model uncertainty and the pricing of American options. Finance Stoch. 21 285-329. · Zbl 1380.91131
[20] Hobson, D. G. (1998). The maximum maximum of a martingale. In Séminaire de Probabilités, XXXII. Lecture Notes in Math. 1686 250-263. Springer, Berlin. · Zbl 0935.60028
[21] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. · Zbl 0996.60001
[22] Kellerer, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 399-432. · Zbl 0535.60002
[23] Neuberger, A. (2007). Bounds on the American option. Preprint. Available at SSRN:966333.
[24] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin. · Zbl 0917.60006
[25] Stebegg, F. (2014). Model-independent pricing of Asian options via optimal martingale transport. Preprint. Available at arXiv:1412.1429v1.
[26] Touzi, N. (2014). Martingale inequalities, optimal martingale transport, and robust superhedging. In Congrès SMAI 2013. ESAIM Proc. Surveys 45 32-47. EDP Sci., Les Ulis. · Zbl 1356.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.