zbMATH — the first resource for mathematics

Affine processes beyond stochastic continuity. (English) Zbl 1432.60073
Summary: In this paper, we study time-inhomogeneous affine processes beyond the common assumption of stochastic continuity. In this setting, times of jumps can be both inaccessible and predictable. To this end, we develop a general theory of finite dimensional affine semimartingales under very weak assumptions. We show that the corresponding semimartingale characteristics have affine form and that the conditional characteristic function can be represented with solutions to measure differential equations of Riccati type. We prove existence of affine Markov processes and affine semimartingales under mild conditions and elaborate on examples and applications including affine processes in discrete time.

60J25 Continuous-time Markov processes on general state spaces
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI Euclid
[1] Bélanger, A., Shreve, S. E. and Wong, D. (2004). A general framework for pricing credit risk. Math. Finance 14 317-350. · Zbl 1134.91395
[2] Bogachev, V. I. (2007). Measure Theory. Vol. I, II. Springer, Berlin. · Zbl 1120.28001
[3] Cheridito, P., Filipović, D. and Yor, M. (2005). Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15 1713-1732. · Zbl 1082.60034
[4] Crasta, G. and De Cicco, V. (2011). A chain rule formula in the space \(BV\) and applications to conservation laws. SIAM J. Math. Anal. 43 430-456. · Zbl 1229.26020
[5] Cuchiero, C., Filipović, D., Mayerhofer, E. and Teichmann, J. (2011). Affine processes on positive semidefinite matrices. Ann. Appl. Probab. 21 397-463. · Zbl 1219.60068
[6] Cuchiero, C., Keller-Ressel, M., Mayerhofer, E. and Teichmann, J. (2016). Affine processes on symmetric cones. J. Theoret. Probab. 29 359-422. · Zbl 1342.60125
[7] Daniell, P. J. (1918). Differentiation with respect to a function of limited variation. Trans. Amer. Math. Soc. 19 353-362. · JFM 46.0394.03
[8] Das, P. C. and Sharma, R. R. (1972). Existence and stability of measure differential equations. Czechoslovak Math. J. 22 145-158. · Zbl 0241.34070
[9] Duffie, D. (2005). Credit risk modeling with affine processes. J. Bank. Financ. 29 2751-2802.
[10] Duffie, D., Filipović, D. and Schachermayer, W. (2003). Affine processes and applications in finance. Ann. Appl. Probab. 13 984-1053. · Zbl 1048.60059
[11] Duffie, D. and Lando, D. (2001). Term structures of credit spreads with incomplete accounting information. Econometrica 69 633-664. · Zbl 1019.91022
[12] Dupire, B. (2017). Special techniques for special events. Available at https://fin-risks2017.sciencesconf.org/132142.
[13] Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. J. Finance 25 383-417.
[14] Filipović, D. (2005). Time-inhomogeneous affine processes. Stochastic Process. Appl. 115 639-659. · Zbl 1079.60068
[15] Filipović, D. (2009). Term-Structure Models: A Graduate Course. Springer Finance. Springer, Berlin. · Zbl 1184.91002
[16] Fontana, C. and Schmidt, T. (2018). General dynamic term structures under default risk. Stochastic Process. Appl. 128 3353-3386. · Zbl 1410.91471
[17] Gehmlich, F. and Schmidt, T. (2018). Dynamic defaultable term structure modeling beyond the intensity paradigm. Math. Finance 28 211-239. · Zbl 1403.91361
[18] Geske, R. and Johnson, H. E. (1984). The American put option valued analytically. J. Finance 39 1511-1524.
[19] Gil’, M. I. (2007). Difference Equations in Normed Spaces: Stability and Oscillations. North-Holland Mathematics Studies 206. Elsevier, Amsterdam.
[20] Heath, D., Jarrow, R. A. and Morton, A. J. (1992). Bond pricing and the term structure of interest rates. Econometrica 60 77-105. · Zbl 0751.90009
[21] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin. · Zbl 1018.60002
[22] Janson, S. (2004). Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110 177-245. · Zbl 1075.60109
[23] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. · Zbl 0996.60001
[24] Keller-Ressel, M. (2011). Moment explosions and long-term behavior of affine stochastic volatility models. Math. Finance 21 73-98. · Zbl 1229.91135
[25] Keller-Ressel, M., Papapantoleon, A. and Teichmann, J. (2013). The affine LIBOR models. Math. Finance 23 627-658. · Zbl 1275.91140
[26] Kim, D. H. and Wright, J. H. (2014). Jumps in bond yields at known times. Technical report, National Bureau of Economic Research, Cambridge, MA.
[27] Johannes, M. (2004). The statistical and economic role of jumps in continuous-time interest rate models. J. Finance 59 227-260.
[28] Lintner, J. (1956). Distribution of incomes of corporations among dividends, retained earnings, and taxes. Am. Econ. Rev. 97-113.
[29] Merton, R. (1974). On the pricing of corporate debt: The risk structure of interest rates. J. Finance 29 449-470.
[30] Miller, M. H. and Modigliani, F. (1961). Dividend policy, growth, and the valuation of shares. J. Bus. 34 411-433.
[31] Miller, M. H. and Rock, K. (1985). Dividend policy under asymmetric information. J. Finance 40 1031-1051.
[32] Piazzesi, M. (2001). An econometric model of the yield curve with macroeconomic jump effects. NBER working paper 8246.
[33] Piazzesi, M. (2005). Bond yields and the federal reserve. J. Polit. Econ. 113 311-344.
[34] Piazzesi, M. (2010). Affine term structure models. Handbook of Financial Econometrics 1 691-766.
[35] Protter, P. E. (2004). Stochastic Integration and Differential Equations, 2nd ed. Stochastic Modelling and Applied Probability 21. Springer, Berlin. · Zbl 1041.60005
[36] Richter, A. and Teichmann, J. (2017). Discrete time term structure theory and consistent recalibration models. SIAM J. Financial Math. 8 504-531. · Zbl 1407.91256
[37] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge.
[38] Schnurr, A. (2017). The fourth characteristic of a semimartingale. Available at arXiv:1709.06756. · Zbl 1462.60102
[39] Sharma, R. R. (1972). An abstract measure differential equation. Proc. Amer. Math. Soc. 32 503-510. · Zbl 0213.36201
[40] Veraar, M. (2012). The stochastic Fubini theorem revisited. Stochastics 84 543-551. · Zbl 1255.60086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.