×

Crossing a fitness valley as a metastable transition in a stochastic population model. (English) Zbl 1433.92033

Summary: We consider a stochastic model of population dynamics where each individual is characterised by a trait in \(\{0,1,\ldots,L\}\) and has a natural reproduction rate, a logistic death rate due to age or competition and a probability of mutation towards neighbouring traits at each reproduction event. We choose parameters such that the induced fitness landscape exhibits a valley: mutant individuals with negative fitness have to be created in order for the population to reach a trait with positive fitness. We focus on the limit of large population and rare mutations at several speeds. In particular, when the mutation rate is low enough, metastability occurs: the exit time of the valley is an exponentially distributed random variable.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
92D15 Problems related to evolution
60J85 Applications of branching processes

References:

[1] Abu Awad, D. and Billiard, S. (2017). The double edged sword: The demographic consequences of the evolution of self-fertilization. Evolution 71 1178-1190.
[2] Alexander, H. K. (2013). Conditional distributions and waiting times in multitype branching processes. Adv. in Appl. Probab. 45 692-718. · Zbl 1276.92081 · doi:10.1239/aap/1377868535
[3] Baar, M., Bovier, A. and Champagnat, N. (2017). From stochastic, individual-based models to the canonical equation of adaptive dynamics in one step. Ann. Appl. Probab. 27 1093-1170. · Zbl 1371.92094 · doi:10.1214/16-AAP1227
[4] Baar, M., Coquille, L., Mayer, H., Hölzel, M., Rogava, M., Tüting, T. and Bovier, A. (2016). A stochastic model for immunotherapy of cancer. Sci. Rep. 6 24169.
[5] Billiard, S. and Smadi, C. (2017). The interplay of two mutations in a population of varying size: A stochastic eco-evolutionary model for clonal interference. Stochastic Process. Appl. 127 701-748. · Zbl 1378.92055 · doi:10.1016/j.spa.2016.06.024
[6] Bolker, B. and Pacala, S. W. (1997). Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52 179-197. · Zbl 0890.92020 · doi:10.1006/tpbi.1997.1331
[7] Bolker, B. M. and Pacala, S. W. (1999). Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal. Amer. Nat. 153 575-602.
[8] Bovier, A., Coquille, L. and Neukirch, R. (2018). The recovery of a recessive allele in a Mendelian diploid model. J. Math. Biol. 77 971-1033. · Zbl 1415.92123 · doi:10.1007/s00285-018-1240-z
[9] Bovier, A. and den Hollander, F. (2015). Metastability: A Potential-Theoretic Approach. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 351. Springer, Cham. · Zbl 1339.60002
[10] Bovier, A. and Wang, S.-D. (2013). Trait substitution trees on two time scales analysis. Markov Process. Related Fields 19 607-642. · Zbl 1301.92060
[11] Brink-Spalink, R. and Smadi, C. (2017). Genealogies of two linked neutral loci after a selective sweep in a large population of stochastically varying size. Adv. in Appl. Probab. 49 279-326. · Zbl 1429.92115 · doi:10.1017/apr.2016.88
[12] Britton, T. and Pardoux, E. (2017). Stochastic epidemics in a homogeneous community. In preparation. · Zbl 1447.92402
[13] Carter, A. J. and Wagner, G. P. (2002). Evolution of functionally conserved enhancers can be accelerated in large populations: A population-genetic model. Proc. R. Soc. Lond., B Biol. Sci. 269 953-960.
[14] Champagnat, N. (2006). A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stochastic Process. Appl. 116 1127-1160. · Zbl 1100.60055 · doi:10.1016/j.spa.2006.01.004
[15] Champagnat, N., Ferrière, R. and Ben Arous, G. (2001). The canonical equation of adaptive dynamics: A mathematical view. Selection 2 73-83.
[16] Champagnat, N., Ferrière, R. and Méléard, S. (2008). From individual stochastic processes to macroscopic models in adaptive evolution. Stoch. Models 24 2-44. · Zbl 1157.60339 · doi:10.1080/15326340802437710
[17] Champagnat, N. and Méléard, S. (2011). Polymorphic evolution sequence and evolutionary branching. Probab. Theory Related Fields 151 45-94. · Zbl 1225.92040
[18] Chazottes, J.-R., Collet, P. and Méléard, S. (2016). Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes. Probab. Theory Related Fields 164 285-332. · Zbl 1335.92073 · doi:10.1007/s00440-014-0612-6
[19] Chazottes, J.-R., Collet, P. and Méléard, S. (2017). On time scales and quasi-stationary distributions for multitype birth-and-death processes. arXiv preprint arXiv:1702.05369. · Zbl 1434.60237 · doi:10.1214/18-AIHP948
[20] Coron, C., Costa, M., Leman, H. and Smadi, C. (2018). A stochastic model for speciation by mating preferences. J. Math. Biol. 76 1421-1463. · Zbl 1390.60282 · doi:10.1007/s00285-017-1175-9
[21] Coron, C., Méléard, S., Porcher, E. and Robert, A. (2013). Quantifying the mutational meltdown in diploid populations. Amer. Nat. 181 623-636.
[22] Cowperthwaite, M. C., Bull, J. J. and Meyers, L. A. (2006). From bad to good: Fitness reversals and the ascent of deleterious mutations. PLoS Comput. Biol. 2 e141.
[23] DePristo, M. A., Hartl, D. L. and Weinreich, D. M. (2007). Mutational reversions during adaptive protein evolution. Mol. Biol. Evol. 24 1608-1610.
[24] Dieckmann, U. and Law, R. (1996). The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34 579-612. · Zbl 0845.92013 · doi:10.1007/BF02409751
[25] Dieckmann, U. and Law, R. (2000). Moment approximations of individual-based models. In The Geometry of Ecological Interactions: Simplifying Spatial Complexity (U. Dieckmann, R. Law and J. A. J. Metz, eds.) 252-270. Cambridge University Press, Cambridge.
[26] Durrett, R. and Mayberry, J. (2011). Traveling waves of selective sweeps. Ann. Appl. Probab. 21 699-744. · Zbl 1219.92037 · doi:10.1214/10-AAP721
[27] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York. · Zbl 0592.60049
[28] Fournier, N. and Méléard, S. (2004). A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14 1880-1919. · Zbl 1060.92055 · doi:10.1214/105051604000000882
[29] Geritz, S. A., Metz, J. A., Kisdi, É. and Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78 2024.
[30] Giachetti, C. and Holland, J. J. (1988). Altered replicase specificity is responsible for resistance to defective interfering particle interference of an Sdi-mutant of vesicular stomatitis virus. J. Virol. 62 3614-3621.
[31] Gillespie, J. H. (1984). Molecular evolution over the mutational landscape. Evolution 38 1116-1129.
[32] Gokhale, C. S., Iwasa, Y., Nowak, M. A. and Traulsen, A. (2009). The pace of evolution across fitness valleys. J. Theoret. Biol. 259 613-620. · Zbl 1402.92311 · doi:10.1016/j.jtbi.2009.04.011
[33] Haeno, H., Maruvka, Y. E., Iwasa, Y. and Michor, F. (2013). Stochastic tunneling of two mutations in a population of cancer cells. PLoS ONE 8 e65724.
[34] Iwasa, Y., Michor, F. and Nowak, M. A. (2004). Evolutionary dynamics of invasion and escape. J. Theoret. Biol. 226 205-214. · Zbl 1439.92132 · doi:10.1016/j.jtbi.2003.08.014
[35] Iwasa, Y., Michor, F. and Nowak, M. A. (2004). Stochastic tunnels in evolutionary dynamics. Genetics 166 1571-1579.
[36] Leman, H. (2016). Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence. Stoch. Partial Differ. Equ. Anal. Comput. 4 791-826. · Zbl 1387.60117 · doi:10.1007/s40072-016-0077-y
[37] Lenski, R. E., Ofria, C., Pennock, R. T. and Adami, C. (2003). The evolutionary origin of complex features. Nature 423 139-144.
[38] Maisnier-Patin, S., Berg, O. G., Liljas, L. and Andersson, D. I. (2002). Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46 355-366.
[39] Metz, J. A., Geritz, S. A., Meszéna, G., Jacobs, F. J. and Van Heerwaarden, J. S. (1995). Adaptive dynamics: A geometrical study of the consequences of nearly faithful reproduction. WP-95-099. · Zbl 0972.92024
[40] Moore, F. B.-G. and Tonsor, S. J. (1994). A simulation of Wright’s shifting-balance process: Migration and the three phases. Evolution 48 69-80.
[41] O’Hara, P. J., Nichol, S. T., Horodyski, F. M. and Holland, J. J. (1984). Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell 36 915-924.
[42] Sagitov, S. and Serra, M. C. (2009). Multitype Bienaymé-Galton-Watson processes escaping extinction. Adv. in Appl. Probab. 41 225-246. · Zbl 1161.60031 · doi:10.1239/aap/1240319583
[43] Schrag, S. J., Perrot, V. and Levin, B. R. (1997). Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond., B Biol. Sci. 264 1287-1291.
[44] Serra, M. C. (2006). On the waiting time to escape. J. Appl. Probab. 43 296-302. · Zbl 1097.60069 · doi:10.1239/jap/1143936262
[45] Serra, M. C. and Haccou, P. (2007). Dynamics of escape mutants. Theor. Popul. Biol. 72 167-178. · Zbl 1123.92027 · doi:10.1016/j.tpb.2007.01.005
[46] Smadi, C. (2017). The effect of recurrent mutations on genetic diversity in a large population of varying size. Acta Appl. Math. 149 11-51. · Zbl 1373.92087 · doi:10.1007/s10440-016-0086-x
[47] Tran, V. C. (2008). Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM Probab. Stat. 12 345-386. · Zbl 1187.92071 · doi:10.1051/ps:2007052
[48] van der Hofstad, R. (2016). Random Graphs and Complex Networks. Cambridge Univ. Press, Cambridge. · Zbl 1361.05002
[49] Wade, M. J. and Goodnight, C. J. (1991). Wright’s shifting balance theory: An experimental study. Science 253 1015-1018.
[50] Weinreich, D. M. and Chao, L. (2005). Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution 59 1175-1182.
[51] Weissman, D. B., Desai, M. M., Fisher, D. S. and Feldman, M. W. (2009). The rate at which asexual populations cross fitness valleys. Theor. Popul. Biol. 75 286-300. · Zbl 1213.92051 · doi:10.1016/j.tpb.2009.02.006
[52] Wright, S. (1965). Factor interaction and linkage in evolution. Proc. R. Soc. Lond., B Biol. Sci. 162 80-104.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.