zbMATH — the first resource for mathematics

Arnoldi method for large quaternion right eigenvalue problem. (English) Zbl 1432.65047
Summary: In this paper, we investigate the Arnoldi method of the right eigenvalue problem of the large-scale quaternion matrices. We use the real structure-preserving rather than the quaternion or the real structure, which has limitations in dealing with large quaternion matrices, to construct algorithms. The basic quaternion Arnoldi method is proposed to get the partial Schur decomposition of the quaternion matrices. Then, we give a novel algorithm for calculating the right eigenvectors of a quaternion Schur form. Furthermore, an explicitly restarted quaternion Arnoldi method (ERQAM) is presented to solve the right eigenpairs of the quaternion matrices. Finally, we provide five numerical examples which show the efficiency and accuracy of the proposed algorithms, and illustrate that the performance of ERQAM for large low rank quaternion matrices is better than that of the already known and brand-new methods.
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A18 Eigenvalues, singular values, and eigenvectors
15B33 Matrices over special rings (quaternions, finite fields, etc.)
Full Text: DOI
[1] Zhang, Fz, Quaternions and matrices of quaternions, Linear Algebra Appl., 251, 21-57 (1997) · Zbl 0873.15008
[2] Jiang, Ts; Chen, L., An algebraic method for Schrödinger equations in quaternionic quantum mechanics, Comput. Phys. Commun., 178, 11, 795-799 (2008) · Zbl 1196.81027
[3] De Leo, S.; Scolarici, G., Right eigenvalue equation in quaternionic quantum mechanics, J. Phys. A Math. Gen., 33, 15, 2971 (2000) · Zbl 0954.81008
[4] Wang, Qw; He, Zh; Zhang, Y., Constrained two-sided coupled Sylvester-type quaternion matrix equations, Automatica, 101, 207-213 (2019) · Zbl 1409.15009
[5] He, Zh; Wang, Qw, A real quaternion matrix equation with applications, Linear Multilinear Algebra, 61, 6, 725-740 (2013) · Zbl 1317.15016
[6] Le Bihan, N., Sangwine, S.J.: Quaternion principal component analysis of color images. In: ICIP, vol. 1, p. I-809 (2003)
[7] Farenick, Dr; Pidkowich, Ba, The spectral theorem in quaternions, Linear Algebra Appl., 371, 75-102 (2003) · Zbl 1030.15015
[8] Bunse-Gerstner, A.; Byers, R.; Mehrmann, V., A quaternion QR algorithm, Numer. Math., 55, 1, 83-95 (1989) · Zbl 0681.65024
[9] Jia, Zg; Wei, Ms; Ling, St, A new structure-preserving method for quaternion Hermitian eigenvalue problems, J. Comput. Appl. Math., 239, 12-14 (2013) · Zbl 1255.65079
[10] Jia, Zg; Wei, Ms; Zhao, Mx; Chen, Y., A new real structure-preserving quaternion QR algorithm, J. Comput. Appl. Math., 343, 26-48 (2018) · Zbl 06892252
[11] Li, Y.; Wei, Ms; Zhang, Fx; Zhao, Jl, On the power method for quaternion right eigenvalue problem, J. Comput. Appl. Math., 345, 59-69 (2019) · Zbl 1402.15006
[12] Ma, Rr; Jia, Zg; Bai, Zj, A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems, Comput. Math. Appl., 75, 3, 809-820 (2018) · Zbl 1409.65022
[13] Arnoldi, We, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math., 9, 1, 17-29 (1951) · Zbl 0042.12801
[14] Sorensen, Dc, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix. Anal. A, 13, 1, 357-385 (1992) · Zbl 0763.65025
[15] Morgan, R., On restarting the Arnoldi method for large nonsymmetric eigenvalue problems, Math. Comput. AMS, 65, 215, 1213-1230 (1996) · Zbl 0857.65041
[16] Greenbaum, A.; Trefethen, Ln, GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, SIAM J. Sci. Comput., 15, 2, 359-368 (1994) · Zbl 0806.65031
[17] Saad, Y., Numerical Methods for Large Eigenvalue Problems (1992), Manchester: Manchester University Press, Manchester · Zbl 0991.65039
[18] Rodman, L., Topics in Quaternion Linear Algebra (2014), Princeton: Princeton University Press, Princeton · Zbl 1304.15004
[19] Brenner, Jl, Matrices of quaternions, Pac. J. Math., 1, 3, 329-335 (1951) · Zbl 0043.01402
[20] Jia, Zx; Stewart, G., An analysis of the Rayleigh-Ritz method for approximating eigenspaces, Math. Comput., 70, 234, 637-647 (2001) · Zbl 0968.65020
[21] Giraud, L.; Langou, J.; Rozloznik, M., The loss of orthogonality in the Gram-Schmidt orthogonalization process, Comput. Math. Appl., 50, 7, 1069-1075 (2005) · Zbl 1085.65037
[22] Emad, N.; Petiton, S.; Edjlali, G., Multiple explicitly restarted Arnoldi method for solving large eigenproblems, SIAM J. Sci. Comput., 27, 1, 253-277 (2005) · Zbl 1087.65034
[23] Nishida, A.: Least squares Arnoldi for large nonsymmetric eigenproblems. In: Proceedings of the 5th Copper Mountain Conference on Iterative Methods, vol. 2 (1998)
[24] Chen, Y.: Structure-preserving QR algorithm of general quaternion eigenvalue problem with application to color watermarking. Jiangsu Normal University (2018)
[25] Stewart, Gw, A Krylov Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23, 601-614 (2001) · Zbl 1003.65045
[26] Jia, Zhigang; Ng, Michael K.; Song, Guang-Jing, Lanczos method for large-scale quaternion singular value decomposition, Numerical Algorithms, 82, 2, 699-717 (2018) · Zbl 07107363
[27] Lehoucq, R.B.: Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration. Rice University (1995)
[28] Wang, Z.; Bovik, Ac; Sheikh, Hr; Simoncelli, Ep, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Signal Process., 13, 4, 600-612 (2004)
[29] Subakan, Ön; Vemuri, Bc, A quaternion framework for color image smoothing and segmentation, Int. J. Comput. Vision., 91, 3, 233-250 (2011) · Zbl 1235.68315
[30] Li, Y.; Wei, Ms; Zhang, Fx; Zhao, Jl, A fast structure-preserving method for computing the singular value decomposition of quaternion matrix, Appl. Math Comput., 235, 157-167 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.