×

zbMATH — the first resource for mathematics

Estimation of long-range dependence in gappy Gaussian time series. (English) Zbl 1436.62417
Summary: Knowledge of the long-range dependence (LRD) parameter is critical to studies of self-similar behavior. However, statistical estimation of the LRD parameter becomes difficult when the observed data are masked by short-range dependence and other noises or are gappy in nature (i.e., some values are missing in an otherwise regular sampling). Currently there is a lack of theory for spectral- and wavelet-based estimators of the LRD parameter for gappy data. To address this, we estimate the LRD parameter for gappy Gaussian semiparametric time series based upon undecimated wavelet variances. We develop estimation methods by using novel estimators of the wavelet variances, providing asymptotic theory for the joint distribution of the wavelet variances and our estimator of the LRD parameter. We introduce sandwich estimators to compute standard errors for our estimates. We demonstrate the efficacy of our methods using Monte Carlo simulations and provide guidance on practical issues such as how to select the range of wavelet scales. We demonstrate the methodology using two applications: one for gappy Arctic sea-ice draft data and another for gap-free and gappy daily average temperature data collected at 17 locations in south central Sweden.
MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M15 Inference from stochastic processes and spectral analysis
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
62D10 Missing data
62P12 Applications of statistics to environmental and related topics
Software:
R; sapa; wmtsa
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abry, P.; Veitch, D., Wavelet analysis of long-range-dependent traffic, IEEE Trans. Inf. Theory, 44, 2-15 (1998) · Zbl 0905.94006
[2] Akaike, H., Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika, 60, 255-265 (1973) · Zbl 0318.62075
[3] Bardet, J.; Lang, G.; Moulines, E.; Soulier, P., Wavelet estimator of long-range dependent processes, Stat. Inference Stoch. Process., 3, 85-99 (2000) · Zbl 1054.62579
[4] Beran, J., Statistics for Long Memory Processes (1994), New York, NY: Chapman and Hall, New York, NY · Zbl 0869.60045
[5] Bloomfield, P., Spectral analysis with randomly missing observations, J. R. Stat. Soc. Ser. B, 32, 369-380 (1970) · Zbl 0218.62111
[6] Brillinger, Dr, Time Series: Data Analysis and Theory (1981), Toronto: Holden-Day Inc, Toronto
[7] Craigmile, Pf, Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes, J. Time Ser. Anal., 24, 505-511 (2003) · Zbl 1035.68131
[8] Craigmile, Pf; Guttorp, P., Space-time modeling of trends in temperature series, J. Time Ser. Anal., 32, 378-395 (2011) · Zbl 1294.62194
[9] Craigmile, Pf; Percival, Db, Asymptotic decorrelation of between-scale wavelet coefficients, IEEE Trans. Inf. Theory, 51, 1039-1048 (2005) · Zbl 1297.62191
[10] Craigmile, Pf; Guttorp, P.; Percival, Db, Trend assessment in a long memory dependence model using the discrete wavelet transform, Environmetrics, 15, 313-335 (2004)
[11] Craigmile, Pf; Guttorp, P.; Percival, Db, Wavelet based estimation for polynomial contaminated fractionally differenced processes, IEEE Trans. Signal Process., 53, 3151-3161 (2005) · Zbl 1373.62434
[12] Dahlhaus, R., Nonparametric spectral analysis with missing observations, Sankhyā Indian J. Stat. Ser. A, 49, 347-367 (1987) · Zbl 0665.62094
[13] Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, PA (1992) · Zbl 0776.42018
[14] Davies, Rb; Harte, Ds, Tests for Hurst effect, Biometrika, 74, 95-101 (1987) · Zbl 0612.62123
[15] Dunsmuir, W.; Robinson, Pm, Asymptotic theory for time series containing missing and amplitude modulated observations, Sankhyā Indian J. Stat. Ser. A, 43, 260-281 (1981) · Zbl 0531.62079
[16] Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Stat. Assoc., 96, 1348-1360 (2001) · Zbl 1073.62547
[17] Fay, G.; Moulines, E.; Roueff, F.; Taqqu, Ms, Estimators of long-memory: Fourier versus wavelets, J. Econom., 151, 159-177 (2009) · Zbl 1431.62367
[18] Geweke, J.; Porter-Hudak, S., The estimation and application of long memory time series models, J. Time Ser. Anal., 4, 221-238 (1983) · Zbl 0534.62062
[19] Granger, Cwj; Joyeux, R., An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1, 15-29 (1980) · Zbl 0503.62079
[20] Green, Pj, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732 (1995) · Zbl 0861.62023
[21] Heidelberger, P.; Welch, Pd, A spectral method for confidence interval generation and run length control in simulations, Commun. ACM, 24, 233-245 (1981)
[22] Hosking, Jrm, Fractional differencing, Biometrika, 68, 165-176 (1981) · Zbl 0464.62088
[23] Hurst, He, The problem of long-term storage in reservoirs, Trans. Am. Soc. Civil Eng., 116, 776-808 (1951)
[24] Hurvich, C.; Lang, G.; Soulier, P., Estimation of long memory in the presence of a smooth nonparametric trend, J. Am. Stat. Assoc., 100, 853-871 (2005) · Zbl 1117.62359
[25] Hurvich, Cm; Chen, Ww, An efficient taper for potentially overdifferenced long-memory time series, J. Time Ser. Anal., 21, 155-180 (2000) · Zbl 0958.62085
[26] Hurvich, Cm; Ray, Bk, The local Whittle estimator of long-memory stochastic volatility, J. Financ. Econom., 1, 445-470 (2003)
[27] Hurvich, Cm; Tsai, Cl, Regression and time series model selection in small samples, Biometrika, 76, 297-307 (1989) · Zbl 0669.62085
[28] Jensen, M., Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter, J. Forecast., 18, 17-32 (1999)
[29] Jones, Rh, Spectrum estimation with missing observations, Ann. Inst. Stat. Math., 23, 387-398 (1971) · Zbl 0255.62071
[30] Knight, Mi; Nason, Gp; Nunes, Ma, A wavelet lifting approach to long-memory estimation, Stat. Comput., 27, 1453-1471 (2016) · Zbl 1384.62289
[31] Ko, K.; Vannucci, M., Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes, J. Stat. Plann. Inference, 136, 3415-3434 (2006) · Zbl 1102.62025
[32] Kouamo, O.; Lévy-Leduc, C.; Moulines, E., Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the gaussian semi-parametric context, Bernoulli, 19, 172-204 (2013) · Zbl 1288.62061
[33] Künsch, H., Discrimination between monotonic trends and long-range dependence, J. Appl. Probab., 23, 1025-1030 (1986) · Zbl 0623.62085
[34] Künsch, H.: Statistical aspects of self-similar processes. In: Proceedings of the First World Congress of the Bernouilli Society, VNU Science Press, Utrecht, Netherlands, vol. 1, pp. 67-74 (1987) · Zbl 0673.62073
[35] Mandelbrot, Bb; Van Ness, Jw, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422-436 (1968) · Zbl 0179.47801
[36] Mccoy, Ej; Walden, At, Wavelet analysis and synthesis of stationary long-memory processes, J. Comput. Gr. Stat., 5, 26-56 (1996)
[37] Mondal, D.; Percival, D., Wavelet variance analysis for gappy time series, Ann. Inst. Stat. Math., 62, 943-966 (2010) · Zbl 1432.62309
[38] Moulines, E.; Soulier, P.; Doukhan, P.; Oppenheim, G.; Taqqu, Ms, Semiparametric spectral estimation for fractional processes, Theory and Applications of Long-range Dependence, 251-301 (2003), Boston, MA: Birkhäuser, Boston, MA
[39] Moulines, E.; Roueff, F.; Taqqu, Ms, Central limit theorem for the log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context, Fractals, 15, 301-313 (2007) · Zbl 1141.62073
[40] Moulines, E.; Roueff, F.; Taqqu, Ms, On the spectral density of the wavelet coefficients of long-memory time series with application to the log-regression estimation of the memory parameter, J. Time Ser. Anal., 28, 155-187 (2007) · Zbl 1150.62058
[41] Moulines, E.; Roueff, F.; Taqqu, Ms, A wavelet Whittle estimator of the memory parameter of a nonstationary gaussian time series, Ann. Stat., 36, 1925-1956 (2008) · Zbl 1142.62062
[42] Palma, W., Long-Memory Time Series: Theory and Methods (2007), Hoboken, NJ: Wiley-Interscience, Hoboken, NJ · Zbl 1183.62153
[43] Parzen, E., On spectral analysis with missing observations and amplitude modulation, Sankhyā Indian J. Stat. Ser. A, 25, 383-392 (1963) · Zbl 0136.40701
[44] Percival, Donald B.; Mondal, Debashis, A Wavelet Variance Primer, Time Series Analysis: Methods and Applications, 623-657 (2012) · Zbl 1373.62476
[45] Percival, Db; Walden, At, Spectral Analysis for Physical Applications Multitaper and Conventional Univariate Techniques (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0796.62077
[46] Percival, Db; Walden, At, Wavelet Methods for Time Series Analysis (2000), Cambridge: Cambridge University Press, Cambridge
[47] Percival, Db; Rothrock, Da; Thorndike, As; Gneiting, T., The variance of mean sea-ice thickness: effect of long-range dependence, J. Geophys. Res., 113, 1958-1970 (2008)
[48] R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
[49] Robinson, Pm, Semiparametric analysis of long-memory time series, Ann. Stat., 22, 515-539 (1994) · Zbl 0795.62082
[50] Robinson, Pm, Gaussian semiparametric estimation of long range dependence, Ann. Stat., 23, 1630-1661 (1995) · Zbl 0843.62092
[51] Robinson, Pm, Log-periodogram regression of time series with long range dependence, Ann. Stat., 23, 1048-1072 (1995) · Zbl 0838.62085
[52] Roueff, F.; Von Sachs, R., Locally stationary long memory estimation, Stoch. Process. Appl., 121, 813-844 (2010) · Zbl 1220.62111
[53] Roueff, F.; Taqqu, Ms, Asymptotic normality of wavelet estimators of the memory parameter for linear processes, J.Time Ser. Anal., 30, 534-558 (2009) · Zbl 1224.62068
[54] Sabatini, Am, Wavelet-based estimation of 1/f-type signal parameters: confidence intervals using the bootstrap, IEEE Trans. Signal Process., 47, 3406-3409 (1999) · Zbl 1064.62577
[55] Scheinok, Pa, Spectral analysis with randomly missed observations: the binomial case, Ann. Math. Stat., 36, 971-977 (1965) · Zbl 0134.37104
[56] Schwarz, G., Estimating the dimension of a model, Ann. Stat., 6, 461-464 (1978) · Zbl 0379.62005
[57] Velasco, C., Gaussian semiparametric estimation of non-stationary time series, J. Time Ser. Anal., 20, 87-127 (1999)
[58] Velasco, C.; Robinson, Pm, Edgeworth expansions for spectral density estimates and studentized sample mean, Econom. Theory, 17, 497-539 (2001) · Zbl 1018.62013
[59] Walden, At, A unified view of multitaper multivariate spectral estimation, Biometrika, 87, 767-788 (2000) · Zbl 1028.62075
[60] White, H., A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica, 48, 817-838 (1980) · Zbl 0459.62051
[61] Yaglom, Am, Correlation Theory of Stationary and Related Random Functions (1987), NY, New York: Springer, NY, New York
[62] Zurbenko, Ig, The Spectral Analysis of Time Series (1986), Amsterdam: Elsevier Science, Amsterdam
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.