×

zbMATH — the first resource for mathematics

Structural displacement requirement in a topology optimization algorithm based on isogeometric entities. (English) Zbl 1432.74189
Summary: This work deals with the formulation of a general design requirement on the displacement of a continuum medium in the framework of a special density-based algorithm for topology optimization. The algorithm makes use of non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field describing the part topology and of the well-known solid isotropic material with penalization approach. The proposed formulation efficiently exploits the properties of the isogeometric basis functions, which allow defining an implicit filter. In particular, the structural displacement requirement is formulated in the most general sense, by considering displacements on loaded and non-loaded regions. The gradient of the structural displacement is evaluated in closed form by using the principle of virtual work. Moreover, a sensitivity analysis of the optimized topology to the integer parameters, involved in the definition of the hyper-surface, is carried out. The effectiveness of the proposed approach is proven through meaningful 2D and 3D benchmarks.

MSC:
74P15 Topological methods for optimization problems in solid mechanics
90C30 Nonlinear programming
90C31 Sensitivity, stability, parametric optimization
90C53 Methods of quasi-Newton type
90C90 Applications of mathematical programming
65K10 Numerical optimization and variational techniques
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bendsoe, M.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197-224 (1988) · Zbl 0671.73065
[2] Suzuki, K.; Kikuchi, N., A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Eng., 93, 3, 291-318 (1991) · Zbl 0850.73195
[3] Allaire, G.; Bonnetier, E.; Francfort, G.; Jouve, F., Shape optimization by the homogenization method, Numer. Math., 76, 27-68 (1997) · Zbl 0889.73051
[4] Da, D.; Xia, L.; Li, G.; Huang, X., Evolutionary topology optimization of continuum structures with smooth boundary representation, Struct. Multidiscip. Optim., 57, 6, 2143-2159 (2018)
[5] De Ruiter, M.; Van Keulen, F., Topology optimization using a topology description function, Struct. Multidiscip. Optim., 26, 6, 406-416 (2004)
[6] Allaire, G.; Jouve, F.; Toader, Am, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[7] Wang, My; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng., 192, 1, 227-246 (2003) · Zbl 1083.74573
[8] Van Dijk, Np; Maute, K.; Langelaar, M.; Van Keulen, F., Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim., 48, 3, 437-472 (2013)
[9] Bendsoe, M.; Sigmund, O., Topology Optimization—Theory, Methods and Applications (2003), Berlin: Springer, Berlin · Zbl 1059.74001
[10] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[11] Altair Engineering Inc, HyperWorks 13.0, OptiStruct User’s Guide (2014)
[12] SIMULIA: TOSCASTRUCTURE Documentation 8.1 (2013)
[13] Guest, Jk; Prévost, Jh; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Eng., 61, 2, 238-254 (2003) · Zbl 1079.74599
[14] Wang, F.; Lazarov, Bs; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 6, 767-784 (2011) · Zbl 1274.74409
[15] Qian, X., Topology optimization in B-spline space, Comput. Methods Appl. Mech. Eng., 265, 15-35 (2013) · Zbl 1286.74078
[16] Wang, M.; Qian, X., Efficient Filtering in Topology Optimization via B- Splines, ASME J. Mech. Des., 137, 3, 225-251 (2015)
[17] Costa, G.; Montemurro, M.; Pailhès, J., A 2 D topology optimisation algorithm in NURBS framework with geometric constraints, Int. J. Mech. Mater. Des., 14, 4, 669-696 (2018)
[18] Costa, G.; Montemurro, M.; Pailhès, J., NURBS hypersurfaces for 3D topology optimisation problems, Mech. Adv. Mater. Struct. (2019)
[19] Costa, G.; Montemurro, M.; Pailhès, J., Minimum Length Scale Control in a NURBS-based SIMP Method, Comput. Methods Appl. Mech. Eng., 354, 963-989 (2019)
[20] Costa, G.; Montemurro, M.; Pailhès, J.; Perry, N., Maximum length scale requirement in a topology optimisation method based on NURBS hyper-surfaces, CIRP Ann., 68, 153-156 (2019)
[21] Seo, Yd; Kim, Hj; Youn, Sk, Shape optimization and its extension to topological design based on isogeometric analysis, Int. J. Solids Struct., 47, 11-12, 1618-1640 (2010) · Zbl 1194.74275
[22] Xie, X.; Wang, S.; Xu, M.; Wang, Y., A new isogeometric topology optimization using moving morphable components based on r-functions and collocation schemes, Comput. Methods Appl. Mech. Eng., 339, 61-90 (2018)
[23] Zhang, W., Li, D., Kang, P., Guo, X., Youn, S.K.: Explicit topology optimization using iga-based moving morphable void (mmv) approach. Comput. Methods Appl. Mech. Eng. (2019, in press)
[24] Rong, J.; Yi, Jh, A structural topological optimization method for multi-displacement constraints and any initial topology configuration, Acta Mech. Sin., 26, 735-744 (2010) · Zbl 1269.74185
[25] Yi, Gl; Sui, Yk, Different effects of economic and structural performance indexes on model construction of structural topology optimization, Acta. Mech. Sin., 31, 5, 777-788 (2015) · Zbl 1345.74094
[26] Csébfalvi, A., Volume minimization with displacement constraints in topology optimization of continuum structures, Int. J. Optim. Civ. Eng., 6, 447-453 (2016)
[27] Kocvara, M., Topology optimization with displacement constraints: a bilevel programming approach, Struct. Optim., 14, 256-263 (1997)
[28] Sigmund, O., On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach., 25, 493-524 (1997)
[29] Sigmund, O., Manufacturing tolerant topology optimization, Acta. Mech. Sin., 25, 2, 227-239 (2009) · Zbl 1270.74165
[30] Luo, Z.; Tong, L., A level set for shape and topology optimization of large-displacement compliant mechanisms, Int. J. Numer. Methods Eng., 76, 862-892 (2008) · Zbl 1195.74134
[31] Rong, Jh; Liu, Xh; Yi, Jj; Yi, Jh, An efficient structural topological optimization method for continuum structures with multiple displacement constraints, Finite Elem. Anal. Des., 47, 8, 913-921 (2011)
[32] Piegl, L.; Tiller, W., The NURBS Book (1997), Berlin: Springer, Berlin
[33] Liu, Y.; Zhao, G.; Zavalnyi, O.; Cao, X.; Cheng, K.; Xiao, W., STEP-compliant CAD/CNC system for feature-oriented machining, Comput. Aided Des. Appl., 16, 358-368 (2019)
[34] Lanczos, C., The Variational Principles of Mechanics. Dover Books on Physics (1986), New York: Dover, New York · Zbl 1198.70001
[35] Bathe, K., Finite Element Procedures (2006), Englewood Cliffs: Prentice Hall, Englewood Cliffs
[36] Nocedal, J.; Wright, Sj, Numerical Optimization (2006), Berlin: Springer, Berlin
[37] Huang, X.; Xie, Ym, Evolutionary topology optimization of continuum structures with an additional displacement constraint, Struct. Multidiscip. Optim., 40, 409 (2009) · Zbl 1274.74343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.