×

zbMATH — the first resource for mathematics

Probabilistic abstract argumentation frameworks, a possible world view. (English) Zbl 1434.68558
Summary: After Dung’s founding work in Abstract Argumentation Frameworks there has been a growing interest in extending the Dung’s semantics in order to describe more complex or real life situations. Several of these approaches take the direction of weighted or probabilistic extensions. One of the most prominent probabilistic approaches is that of constellation Probabilistic Abstract Argumentation Frameworks.
In this paper, we first make the connection of possible worlds and constellation semantics; we then introduce the probabilistic attack normal form for the constellation semantics; we furthermore prove that the probabilistic attack normal form is sufficient to represent any Probabilistic Abstract Argumentation Framework of the constellation semantics; then we illustrate its connection with Probabilistic Logic Programming and briefly present an existing implementation. The paper continues by also discussing the probabilistic argument normal form for the constellation semantics and proves its equivalent properties. Finally, this paper introduces a new probabilistic structure for the constellation semantics, namely probabilistic cliques.
MSC:
68T27 Logic in artificial intelligence
68N17 Logic programming
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dung, P. M., An argumentation-theoretic foundation for logic programming, J. Log. Program., 22, 2, 151-171 (1995) · Zbl 0816.68045
[2] Bondarenko, A.; Toni, F.; Kowalski, R. A., An assumption-based framework for non-monotonic reasoning, (Logic Programming and Non-monotonic Reasoning (LPNMR) (1993)), 171-189
[3] Oren, N.; Norman, T. J., Semantics for evidence-based argumentation, (Computational Models of Argument (COMMA) (2008)), 276-284
[4] Wu, Y.; Caminada, M., A labelling-based justification status of arguments, Stud. Log., 3, 4, 12-29 (2010)
[5] Baroni, P.; Cerutti, F.; Giacomin, M.; Guida, G., Afra: argumentation framework with recursive attacks, Int. J. Approx. Reason., 52, 1, 19-37 (2011) · Zbl 1211.68433
[6] Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; Woltran, S., Abstract dialectical frameworks. An overview, IfCoLog J. Log. Appl., 4, 8 (2017)
[7] Amgoud, L.; Cayrol, C.; Lagasquie-Schiex, M.-C., On the bipolarity in argumentation frameworks, (NMR (2004)) · Zbl 1151.68049
[8] Modgil, S.; Prakken, H., A general account of argumentation with preferences, Artif. Intell., 195, 361-397 (2013) · Zbl 1270.68284
[9] Bench-Capon, T. J.M., Persuasion in practical argument using value-based argumentation frameworks, J. Log. Comput., 13, 3, 429-448 (2003) · Zbl 1043.03026
[10] Bistarelli, S.; Rossi, F.; Santini, F., A novel weighted defence and its relaxation in abstract argumentation, Int. J. Approx. Reason., 92, 66-86 (2018) · Zbl 1423.68479
[11] Gabbay, D. M., Fibring argumentation frames, Stud. Log., 93, 2, 231 (2009) · Zbl 1185.68670
[12] Hunter, A., A probabilistic approach to modelling uncertain logical arguments, Int. J. Approx. Reason., 54, 1, 47-81 (2013) · Zbl 1266.68176
[13] Thimm, M., A probabilistic semantics for abstract argumentation, (European Conference on Artificial Intelligence (ECAI) (2012)), 750-755 · Zbl 1327.68290
[14] Hunter, A.; Thimm, M., Probabilistic reasoning with abstract argumentation frameworks, J. Artif. Intell. Res., 59, 565-611 (2017) · Zbl 1418.68193
[15] Li, H.; Oren, N.; Norman, T. J., Probabilistic argumentation frameworks, (Theory and Applications of Formal Argumentation (TAFA) (2011)), 1-16
[16] Fazzinga, B.; Flesca, S.; Parisi, F., On the complexity of probabilistic abstract argumentation, (International Joint Conference on Artificial Intelligence (IJCAI) (2013)), 898-904
[17] Doder, D.; Woltran, S., Probabilistic argumentation frameworks – a logical approach, (Scalable Uncertainty Management (SUM) (2014)), 134-147
[18] Dondio, P., Toward a computational analysis of probabilistic argumentation frameworks, Cybern. Syst., 45, 3, 254-278 (2014) · Zbl 1331.68221
[19] Liao, B.; Xu, K.; Huang, H., Formulating semantics of probabilistic argumentation by characterizing subgraphs: theory and empirical results (2016), CoRR
[20] Hunter, A.; Thimm, M., Optimization of dialectical outcomes in dialogical argumentation, Int. J. Approx. Reason., 78, 73-102 (2016) · Zbl 1386.68158
[21] Hunter, A., Some foundations for probabilistic abstract argumentation, (Computational Models of Argument (COMMA) (2012)), 117-128
[22] Caminada, M. W.A.; Carnielli, W. A.; Dunne, P. E., Semi-stable semantics, J. Log. Comput., 22, 5, 1207-1254 (2012) · Zbl 1267.68223
[23] Gaggl, S. A.; Woltran, S., Cf2 semantics revisited, (Computational Models of Argument (COMMA) (2010)), 243-254
[24] Baroni, P.; Caminada, M.; Giacomin, M., An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410 (2011)
[25] Mantadelis, T.; Janssens, G., Dedicated tabling for a probabilistic setting, (International Conference on Logic Programming (ICLP), vol. 7 (2010)), 124-133 · Zbl 1237.68190
[26] Riguzzi, F.; Swift, T., The PITA system: tabling and answer subsumption for reasoning under uncertainty (2011), CoRR · Zbl 1218.68169
[27] Kimmig, A.; Demoen, B.; De Raedt, L.; Santos Costa, V.; Rocha, R., On the implementation of the probabilistic logic programming language ProbLog, Theory Pract. Log. Program., 11, 2-3, 235-262 (2011) · Zbl 1220.68037
[28] Fierens, D.; Van Den Broeck, G.; Renkens, J.; Shterionov, D.; Gutmann, B.; Thon, I.; Janssens, G.; De Raedt, L., Inference and learning in probabilistic logic programs using weighted Boolean formulas, Theory Pract. Log. Program., 15, 3, 358-401 (2014) · Zbl 1379.68062
[29] Shterionov, D. S.; Janssens, G., Implementation and performance of probabilistic inference pipelines, (Practical Aspects of Declarative Languages (PADL) (2015)), 90-104
[30] Bragaglia, S.; Riguzzi, F., Approximate inference for logic programs with annotated disjunctions, (Inductive Logic Programming (ILP) (2011)), 30-37 · Zbl 1329.68208
[31] Vlasselaer, J.; Van den Broeck, G.; Kimmig, A.; Meert, W.; De Raedt, L., Anytime inference in probabilistic logic programs with Tp-compilation, (International Joint Conference on Artificial Intelligence (IJCAI) (2015)), 1852-1858
[32] Mantadelis, T.; Rocha, R., Using iterative deepening for probabilistic logic inference, (Practical Aspects of Declarative Languages (PADL) (2017)), 198-213
[33] Oikarinen, E.; Woltran, S., Characterizing strong equivalence for argumentation frameworks, Artif. Intell., 175, 14, 1985-2009 (2011) · Zbl 1252.68279
[34] Sato, T., A statistical learning method for logic programs with distribution semantics, (Proceedings of International Conference on Logic Programming: Proceedings of ICLP (1995)), 715-729
[35] De Raedt, L.; Kimmig, A., Probabilistic (logic) programming concepts, Mach. Learn., 100, 1, 5-47 (2015) · Zbl 1346.68050
[36] Mantadelis, T.; Janssens, G., Nesting probabilistic inference, (International Colloquium on Implementation of Constraint LOgic Programming Systems (CICLOPS) (2011))
[37] Bistarelli, S.; Santini, F., Conarg: a constraint-based computational framework for argumentation systems, (IEEE International Conference on Tools with Artificial Intelligence (ICTAI) (2011)), 605-612
[38] Bistarelli, S.; Mantadelis, T.; Santini, F.; Taticchi, C., Probabilistic argumentation frameworks with MetaProbLog and ConArg, (International Conference on Tools with Artificial Intelligence (ICTAI) (2018)), 675-679
[39] Kimmig, A.; Gutmann, B.; Santos Costa, V., Trading memory for answers: towards tabling problog, (International Workshop on Statistical Relational Learning (SRL) (2009))
[40] Mantadelis, T.; Rocha, R., Using iterative deepening for probabilistic logic inference, (Practical Aspects of Declarative Languages (PADL) (2017)), 198-213
[41] Nilsson, N. J., Probabilistic logic, Artif. Intell., 28, 1, 71-87 (1986) · Zbl 0589.03007
[42] Vennekens, J.; Denecker, M.; Bruynooghe, M., CP-logic: a language of causal probabilistic events and its relation to logic programming, Theory Pract. Log. Program., 9, 3, 245-308 (2009) · Zbl 1179.68025
[43] Poole, D., The Independent Choice Logic and Beyond, 222-243 (2008) · Zbl 1137.68596
[44] Gutmann, B., On continuous distributions and parameter estimation in probabilistic logic programs (over continue verdelingen en het schatten van parameters in probabilistische logische programma’s) (2011), Katholieke Universiteit Leuven, Ph.D. thesis
[45] Rabiner, L. R., A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77, 2, 257-286 (1989)
[46] Fazzinga, B.; Flesca, S.; Furfaro, F., Complexity of fundamental problems in probabilistic abstract argumentation: beyond independence (extended abstract), (Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence Organization (2019)), 6362-6366
[47] Bistarelli, S.; Santini, F., Coalitions of arguments: an approach with constraint programming, Fundam. Inform., 124, 4, 383-401 (2013) · Zbl 1290.68116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.