×

zbMATH — the first resource for mathematics

Turing degrees of complete formulas of almost prime models. (English. Russian original) Zbl 07175626
Algebra Logic 58, No. 3, 282-287 (2019); translation from Algebra Logika 58, No. 3, 417-425 (2019).

MSC:
03D28 Other Turing degree structures
03D45 Theory of numerations, effectively presented structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. S. Goncharov and Yu. L. Ershov, Constructive Models, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).
[2] Mal’tsev, AI, On recursive Abelian groups, Dokl. Akad. Nauk SSSR, 146, 1009-1012 (1962) · Zbl 0156.01105
[3] Mal’tsev, AI, Constructive algebras. 1, Usp. Mat. Nauk, 16, 3-60 (1961)
[4] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam (1973). · Zbl 0276.02032
[5] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967). · Zbl 0183.01401
[6] S. Goncharov and B. Khoussainov, “Open problems in the theory of constructive algebraic systems,” Cont. Math., 257, Am. Math. Soc., Providence, RI (2000), pp. 145-170. · Zbl 0961.03037
[7] Nurtazin, AT, Strong and weak constructivizations and computable families, Algebra and Logic, 13, 177-184 (1974) · Zbl 0305.02061
[8] Goncharov, SS, The problem of the number of non-autoequivalent constructivizations, Dokl. Akad. Nauk SSSR, 251, 271-274 (1980)
[9] Goncharov, SS, Problem of number of nonautoequivalent constructivizations, Algebra and Logic, 19, 401-414 (1980) · Zbl 0476.03046
[10] Goncharov, SS, Groups with a finite number of constructivizations, Dokl. Akad. Nauk SSSR, 256, 269-272 (1981) · Zbl 0496.20021
[11] Goncharov, SS; Molokov, AV; Romanovskii, NS, Nilpotent groups of finite algorithmic dimension, Sib. Math. J., 30, 63-68 (1989) · Zbl 0684.20025
[12] Goncharov, SS, Computable single-valued numerations, Algebra and logic, 19, 325-356 (1980) · Zbl 0514.03029
[13] Fokina, EB; Kalimullin, I.; Miller, R., Degrees of categoricity of computable structures, Arch. Math. Log., 49, 51-67 (2010) · Zbl 1184.03026
[14] Csima, BF; Franklin, JN; Shore, RA, Degrees of categoricity and the hyperarithmetic hierarchy, Notre Dame J. Form. Log., 54, 215-231 (2013) · Zbl 1311.03070
[15] Bazhenov, NA, Degrees of categoricity for superatomic Boolean algebras, Algebra and Logic, 52, 179-187 (2013) · Zbl 1315.03052
[16] Anderson, B.; Csima, B., Degrees that are not degrees of categoricity, Notre Dame J. Form. Log., 57, 389-398 (2016) · Zbl 1436.03229
[17] Fokina, E.; Frolov, A.; Kalimullin, I., Categoricity spectra for rigid structures, Notre Dame J. Form. Log., 57, 45-57 (2016) · Zbl 1359.03030
[18] Miller, R., d-Computable categoricity for algebraic fields, J. Symb. Log., 74, 1325-1351 (2009) · Zbl 1202.03044
[19] E. B. Fokina, V. Harizanov, and A. Melnikov, “Computable model theory,” in Turing’s Legacy: Developments from Turing’s Ideas in Logic, Lect. Notes Log., 42, R. Downey (ed.), Cambridge Univ. Press, Ass. Symb. Log., Cambridge (2014), pp. 124-194.
[20] Bazhenov, NA, Autostability spectra for Boolean algebras, Algebra and Logic, 53, 502-505 (2014) · Zbl 1355.03028
[21] Goncharov, SS, Degrees of autostability relative to strong constructivizations, Trudy MIAN, 274, 119-129 (2011) · Zbl 1294.03025
[22] Palyutin, EA, Algebras of formulas for countably categorical theories, Coll. Math., 31, 157-159 (1974) · Zbl 0295.02029
[23] Schmerl, JH, A decidable ℵ_0-categorical theory with a non-recursive Ryll-Nardzewski function, Fund. Math., 98, 121-125 (1978) · Zbl 0372.02025
[24] N. Bazhenov, “Prime model with no degree of autostability relative to strong constructivizations,” in Lect. Notes Comput. Sci., 9136, Springer-Verlag, Berlin (2015), pp. 117-126.
[25] S. S. Goncharov, “On the autostability of almost prime models relative to strong constructivizations,” Usp. Mat. Nauk, 65, No. 5(395), 107-142 (2010).
[26] Morley, M., Decidable models, Israel J. Math., 25, 233-240 (1976) · Zbl 0361.02067
[27] R. Miller, “Revisiting uniform computable categoricity: For the sixtieth birthday of prof. Rod Downey,” Lect. Notes Comp. Sci., 10010, Springer, Cham (2017), pp. 254-270.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.