×

zbMATH — the first resource for mathematics

Exploiting Lagrange duality for topology optimization with frictionless unilateral contact. (English) Zbl 1432.74188
Summary: This paper presents tractable reformulations of topology optimization problems of structures subject to frictionless unilateral contact conditions. Specifically, weconsider stiffness maximization problems of trusses and continua. Based on the Lagrange duality theory, we derive formulations that do not involve complementarity constraints. It is often that a structural optimization problem with contact conditions is formulated as a mathematical programming problem with complementarityconstraints (MPCC problem). However, MPCC usually requires special treatment for numerical solution, because it does not satisfy standard constraint qualifications. In contrast, to the formulation presented in this paper, we can apply standard optimization approaches. Numerical experiments on trusses and continua are performed to examine efficiency of the proposed approach.
MSC:
74P15 Topological methods for optimization problems in solid mechanics
74M15 Contact in solid mechanics
90C46 Optimality conditions and duality in mathematical programming
Software:
CPLEX; SeDuMi; top88.m; top.m
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, Bs; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1-16 (2011) · Zbl 1274.74310
[2] Anjos, Mf; Lasserre, Jb, Handbook on Semidefinite, Conic and Polynomial Optimization. (2012), New York: Springer, New York
[3] Ben-Tal, A.; Kočvara, M.; Nemirovski, A.; Zowe, J., Free material design via semidefinite programming: the multiload case with contact conditions, SIAM Rev., 42, 695-715 (2000) · Zbl 0984.74061
[4] Bendsøe, Mp; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654 (1999) · Zbl 0957.74037
[5] Bourdin, B., Filters in topology optimization, Int. J. Numer. Methods Eng., 50, 2143-2158 (2001) · Zbl 0971.74062
[6] Bruns, Te; Tortorelli, Da, Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Eng., 190, 3443-3459 (2001) · Zbl 1014.74057
[7] Ciarlet, Pg, Introduction to Numerical Linear Algebra and Optimisation (1989), Cambridge: Cambridge University Press, Cambridge
[8] Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976); SIAM, Philadelphia (1999) · Zbl 0322.90046
[9] Fancello, Ea, Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions, Struct. Multidiscip. Optim., 32, 229-240 (2006) · Zbl 1245.74071
[10] Geniaut, S.; Massin, P.; Möes, N., A stable 3D contact formulation using X-FEM, Eur. J. Comput. Mech., 16, 259-275 (2007) · Zbl 1208.74096
[11] Hilding, D., A heuristic smoothing procedure for avoiding local optima in optimization of structures subject to unilateral constraints, Struct. Multidiscip. Optim., 20, 29-36 (2000)
[12] Hilding, D.; Klarbring, A., Optimization of structures in frictional contact, Comput. Methods Appl. Mech. Eng., 205-208, 83-90 (2012) · Zbl 1239.74078
[13] Hilding, D.; Klarbring, A.; Pang, J-S, Minimization of maximum unilateral force, Comput. Methods Appl. Mech. Eng., 177, 215-234 (1999) · Zbl 0943.74049
[14] Hilding, D.; Klarbring, A.; Petersson, J., Optimization of structures in unilateral contact, Appl. Mech. Rev., 52, 139-160 (1999)
[15] IBM ILOG: IBM ILOG CPLEX Optimization Studio Documentation. http://www.ibm.com/support/knowledgecenter/. Accessed Jan 2019
[16] Kanno, Y., Nonsmooth Mechanics and Convex Optimization (2011), Boca Raton: CRC Press, Boca Raton · Zbl 1226.90005
[17] Kanno, Y., Global optimization of trusses with constraints on number of different cross-sections: a mixed-integer second-order cone programming approach, Comput. Optim. Appl., 63, 203-236 (2016) · Zbl 1343.90070
[18] Kanno, Y., Mixed-integer second-order cone programming for global optimization of compliance of frame structure with discrete design variables, Struct. Multidiscip. Optim., 54, 301-316 (2016)
[19] Kanno, Y., Alternating direction method of multipliers as simple heuristic for topology optimization of a truss with uniformed member cross-sections, J. Mech. Des. (ASME), 141, 011403 (2019)
[20] Kanno, Y.; Fujita, S., Alternating direction method of multipliers for truss topology optimization with limited number of nodes: a cardinality-constrained second-order cone programming approach, Optim. Eng., 19, 327-358 (2018) · Zbl 1397.74163
[21] Kanno, Y., Ohsaki, M., Guest, J.K.: Unified treatment of some different fabrication-cost functions in truss topology optimization. In: Proceedings of International Association for Shell and Spatial Structures (IASS) Annual Symposium 2019 and Structural Membranes 2019—Form and Force, Barcelona, Spain, October 7-10 (2019)
[22] Kanno, Y.; Takewaki, I., Sequential semidefinite program for maximum robustness design of structures under load uncertainties, J. Optim. Theory Appl., 130, 265-287 (2006) · Zbl 1278.90300
[23] Kanno, Y.; Yamada, H., A note on truss topology optimization under self-weight load: mixed-integer second-order cone programming approach, Struct. Multidiscip. Optim., 56, 221-226 (2017)
[24] Kanzow, C.; Nagel, C.; Kato, H.; Fukushima, M., Successive linearization methods for nonlinear semidefinite programs, Comput. Optim. Appl., 31, 251-273 (2005) · Zbl 1122.90058
[25] Kim, Nh; Park, Yh; Choi, Kk, Optimization of a hyperelastic structure with multibody contact using continuum-based shape design sensitivity analysis, Struct. Multidiscip. Optim., 21, 196-208 (2001)
[26] Kim, Nh; Yi, K.; Choi, Kk, A material derivative approach in design sensitivity analysis of three-dimensional contact problems, Int. J. Solids Struct., 39, 2087-2108 (2002) · Zbl 1037.74036
[27] Klarbring, A.; Petersson, J.; Rönnqvist, M., Truss topology optimization including unilateral contact, J. Optim. Theory Appl., 87, 1-31 (1995) · Zbl 0841.73046
[28] Klarbring, A.; Rönnqvist, M., Nested approach to structural optimization in nonsmooth mechanics, Struct. Optim., 10, 79-86 (1995)
[29] Klarbring, A.; Strömberg, N., A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements, Struct. Multidiscip. Optim., 45, 147-149 (2012) · Zbl 1274.74350
[30] Kočvara, M.; Zibulevsky, M.; Zowe, J., Mechanical design problems with unilateral contact, Math. Model. Numer. Anal., 32, 255-281 (1998) · Zbl 0901.73055
[31] Lawry, M.; Maute, K., Level set topology optimization of problems with sliding contact interfaces, Struct. Multidiscip. Optim., 52, 1107-1119 (2015)
[32] Luo, Y.; Li, M.; Kang, Z., Topology optimization of hyperelastic structures with frictionless contact supports, Int. J. Solids Struct., 81, 373-382 (2016)
[33] Luo, Z-Q; Pang, J-S; Ralph, D., Mathematical Programs with Equilibrium Constraints (1996), Cambridge: Cambridge University Press, Cambridge
[34] Mankame, Nd; Ananthasuresh, Gk, Topology optimization for synthesis of contact-aided compliant mechanisms using regularized contact modeling, Comput. Struct., 82, 1267-1290 (2004)
[35] Martins, Jac; Raous, M., Friction and Instabilities (2002), Wien: Springer, Wien
[36] Niu, F.; Xu, S.; Cheng, G., A general formulation of structural topology optimization for maximizing structural stiffness, Struct. Multidiscip. Optim., 43, 561-572 (2011)
[37] Petersson, J., On stiffness maximization of variable thickness sheet with unilateral contact, Q. Appl. Math., 54, 541-550 (1996) · Zbl 0871.73046
[38] Petersson, J.; Patriksson, M., Topology optimization of sheets in contact by a subgradient method, Int. J. Numer. Methods Eng., 40, 1295-1321 (1997) · Zbl 0890.73046
[39] Pólik, I.: Addendum to the SeDuMi User Guide: Version 1.1. Technical Report, Advanced Optimization Laboratory, McMaster University, Hamilton (2005). http://sedumi.ie.lehigh.edu/sedumi/. Accessed Jan 2019
[40] Rockafellar, Rt, Convex Analysis (1970), Princeton: Princeton University Press, Princeton
[41] Stavroulakis, Ge, Optimal prestress of cracked unilateral structures: finite element analysis of an optimal control problem for variational inequalities, Comput. Methods Appl. Mech. Eng., 123, 231-246 (1995) · Zbl 1067.74555
[42] Strömberg, N., Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance-volume product, Struct. Multidiscip. Optim., 42, 341-350 (2010) · Zbl 1274.74397
[43] Strömberg, N.: Topology optimisation of bodies in unilateral contact by maximizing the potential energy. In: Proceedings of the 11th International Conference on Computational Structures Technology, Paper No. 237, Dubrovnik, Croatia (2012)
[44] Strömberg, N.; Klarbring, A., Topology optimization of structures in unilateral contact, Struct. Multidiscip. Optim., 41, 57-64 (2010) · Zbl 1274.74398
[45] Sturm, Jf, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11-12, 625-653 (1999) · Zbl 0973.90526
[46] Tin-Loi, F., On the numerical solution of a class of unilateral contact structural optimization problems, Struct. Optim., 17, 155-161 (1999)
[47] Wriggers, P., Computational Contact Mechanics (2006), Berlin: Springer, Berlin · Zbl 1104.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.