Finite sample properties of confidence intervals centered on a model averaged estimator. (English) Zbl 1437.62118

Summary: We examine confidence intervals centered on the frequentist model averaged estimator proposed by S. T. Buckland et al. [Biometrics 53, No. 2, 603–618 (1997; Zbl 0885.62118)]. We consider two formulas for the standard error of this estimator: the estimate put forward by Buckland et al. [loc. cit.] of their formula (9) and the square root of formula (6.12) of K. P. Burnham and D. R. Anderson [Model selection and multimodel inference. A practical information-theoretic approach. 2nd ed. New York, NY: Springer (2002; Zbl 1005.62007)]. We also consider four procedures that have been suggested in the literature for obtaining the half-width of the confidence interval from the chosen standard error. We assess the exact finite sample performances of the eight resulting confidence intervals using a simple testbed situation consisting of two nested linear regression models. This is done by deriving exact expressions for the confidence intervals and then for the coverages and scaled expected lengths of these confidence intervals. We also explore the performances of these confidence intervals in the limit as the residual degrees of freedom diverges to infinity.


62F25 Parametric tolerance and confidence regions
62J05 Linear regression; mixed models


MuMIn; Glmulti; AICcmodavg; MAMI; R
Full Text: DOI arXiv


[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1964), Dover: Dover Washington, D.C. · Zbl 0171.38503
[2] Bartoń, K., MuMIn: Multi-Model Inference. R package version 1.43.6 (2019), URL https://CRAN.R-project.org/package=MuMIn
[3] Buckland, S. T.; Burnham, K. P.; Augustin, N. H., Model selection: an integral part of inference, Biometrics, 53, 603-618 (1997) · Zbl 0885.62118
[4] Burnham, K. P.; Anderson, D. R., Model Selection and Multimodel Inference (2002), Springer Verlag: Springer Verlag New York · Zbl 1005.62007
[5] Calcagno, V., Glmulti: Model Selection and Multimodel Inference Made Easy. R package version (2019), URL https://CRAN.R-project.org/package=glmulti
[6] Claeskens, G.; Hjort, N. L., Model Selection and Model Averaging (2008), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1166.62001
[7] Fletcher, D., Model Averaging (2018), Springer: Springer Berlin
[8] Fletcher, D.; Dillingham, P. W., Model-averaged confidence intervals for factorial experiments, Comput. Statist. Data Anal., 55, 3041-3048 (2011)
[9] Fletcher, D.; Turek, D., Model-averaged profile likelihood intervals, J. Agric. Biol. Environ. Stat., 17, 38-51 (2011) · Zbl 1302.62254
[10] Graybill, F. A., Theory and Application of the Linear Model (1976), Wadsworth: Wadsworth Belmont, CA · Zbl 0371.62093
[11] Hjort, N. L.; Claeskens, G., Frequentist model average estimators, J. Amer. Statist. Assoc., 98, 879-899 (2003) · Zbl 1047.62003
[12] Kabaila, P., On the minimum coverage probability of model averaged tail area confidence intervals, Canad. J. Statist., 46, 279-297 (2018)
[13] Kabaila, P.; Giri, K., Confidence intervals in regression utilizing prior information, J. Statist. Plann. Inference, 139, 3419-3429 (2009) · Zbl 1167.62027
[14] Kabaila, P.; Giri, K., Upper bounds on the minimum coverage probability of confidence intervals in regression after model selection, Aust. N.Z. J. Stat., 271-287 (2009) · Zbl 1334.62111
[15] Kabaila, P.; Leeb, H., On the large-sample minimal coverage probability of confidence intervals after model selection, J. Amer. Statist. Assoc., 101, 619-629 (2006) · Zbl 1119.62322
[16] Kabaila, P.; Welsh, A. H.; Abeysekera, W., Model-averaged confidence intervals, Scand. J. Stat., 43, 35-48 (2016) · Zbl 1364.62176
[17] Kabaila, P.; Welsh, A. H.; Mainzer, R., The performance of model averaged tail area confidence intervals, Comm. Statist. Theory Methods, 46, 10718-10732 (2017) · Zbl 1379.62037
[18] Kabaila, P.; Wijethunga, C., Confidence intervals centred on bootstrap smoothed estimators, Aust. N.Z. J. Stat., 61, 19-38 (2019) · Zbl 1420.62133
[19] Lukacs, P. M.; Burnham, K. P.; Anderson, D. R., Model selection bias and Freedman’s paradox, Ann. Inst. Statist. Math., 62, 117-125 (2010) · Zbl 1422.62086
[20] Mazerolle, M. J., AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.2-2 (2019), URL https://CRAN.R-project.org/package=AICcmodavg
[21] R: A Language and Environment for Statistical Computing (2018), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria, URL https://www.R-project.org
[22] Shomaker, M.; Heumann, C., Model averaging and model selection after multiple imputation using the R-package MAMI (2017), URL http://mami.r-forge.r-project.org/
[23] Turek, D.; Fletcher, D., Model-averaged wald confidence intervals, Comput. Statist. Data Anal., 56, 2809-2815 (2012) · Zbl 1255.62141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.