×

zbMATH — the first resource for mathematics

Slicing conditions for axisymmetric gravitational collapse of Brill waves. (English) Zbl 1431.83007
MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C75 Space-time singularities, cosmic censorship, etc.
83C15 Exact solutions to problems in general relativity and gravitational theory
83C35 Gravitational waves
83-08 Computational methods for problems pertaining to relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eppley, K., Evolution of time-symmetric gravitational waves: initial data and apparent horizons, Phys. Rev. D, 16, 1609-1614, (1977)
[2] Brill, D. R., On the positive definite mass of the bondi-weber-wheeler time-symmetric gravitational waves, Ann. Phys., 7, 466-483, (1959)
[3] Abrahams, A. M.; Evans, C. R., Critical behavior and scaling in vacuum axisymmetric gravitational collapse, Phys. Rev. Lett., 70, 2980-2983, (1993)
[4] Teukolsky, S. A., Linearized quadrupole waves in general relativity and the motion of test particles, Phys. Rev. D, 26, 745-750, (1982)
[5] Choptuik, M. W., Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett., 70, 9-12, (1993)
[6] Gundlach, C.; Martín-García, J. M., Critical phenomena in gravitational collapse, Living Rev. Relativ., 10, 5, (2007) · Zbl 1175.83037
[7] Alcubierre, M.; Allen, G.; Brügmann, B.; Lanfermann, G.; Seidel, E.; Suen, W-M; Tobias, M., Gravitational collapse of gravitational waves in 3d numerical relativity, Phys. Rev. D, 61, (2000)
[8] Garfinkle, D.; Duncan, G. C., Numerical evolution of brill waves, Phys. Rev. D, 63, (2001)
[9] Bona, C.; Massó, J.; Seidel, E.; Stela, J., New formalism for numerical relativity, Phys. Rev. Lett., 75, 600-603, (1995)
[10] Alcubierre, M.; Brügmann, B.; Diener, P.; Koppitz, M.; Pollney, D.; Seidel, E.; Takahashi, R., Gauge conditions for long-term numerical black hole evolutions without excision, Phys. Rev. D, 67, (2003)
[11] Hilditch, D.; Baumgarte, T. W.; Weyhausen, A.; Dietrich, T.; Brügmann, B.; Montero, P. J.; Müller, E., Collapse of nonlinear gravitational waves in moving-puncture coordinates, Phys. Rev. D, 88, (2013)
[12] Hilditch, D.; Weyhausen, A.; Brügmann, B., Pseudospectral method for gravitational wave collapse, Phys. Rev. D, 93, (2016)
[13] Hilditch, D.; Weyhausen, A.; Brügmann, B., Evolutions of centered brill waves with a pseudospectral method, Phys. Rev. D, 96, (2017)
[14] Rinne, O., Constrained evolution in axisymmetry and the gravitational collapse of prolate brill waves, Class. Quantum Grav., 25, (2008) · Zbl 1180.83008
[15] Shibata, M.; Nakamura, T., Evolution of three-dimensional gravitational waves: harmonic slicing case, Phys. Rev. D, 52, 5428-5444, (1995) · Zbl 1250.83027
[16] Baumgarte, T. W.; Shapiro, S. L., On the numerical integration of einstein’s field equations, Phys. Rev. D, 59, (1999) · Zbl 1250.83004
[17] Alcubierre, M., Introduction to 3  +  1 Numerical Relativity, (2008), Oxford: Oxford University Press, Oxford · Zbl 1140.83002
[18] Gundlach, C.; Martín-García, J. M., Well-posedness of formulations of the einstein equations with dynamical lapse and shift conditions, Phys. Rev. D, 74, (2006)
[19] van Meter, J. R.; Baker, J. G.; Koppitz, M.; Choi, D-I, How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture, Phys. Rev. D, 73, (2006)
[20] Boyd, J. P., Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69, 112-142, (1987) · Zbl 0615.65090
[21] Boyd, J. P., Chebyshev and Fourier Spectral Methods, (2001), New York: Dover, New York · Zbl 0994.65128
[22] Anderson, E., LAPACK Users’ Guide, (1999), SIAM: Philadelphia, PA, SIAM · Zbl 0755.65028
[24] Löffler, F., The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics, Class. Quantum Grav., 29, (2012) · Zbl 1247.83003
[26] Goodale, T.; Allen, G.; Lanfermann, G.; Massó, J.; Radke, T.; Seidel, E.; Shalf, J., The Cactus framework and toolkit: design and applications, (2003), Springer: Springer, Berlin · Zbl 1027.65524
[27] Schnetter, E.; Hawley, S. H.; Hawke, I., Evolutions in 3D numerical relativity using fixed mesh refinement, Class. Quantum Grav., 21, 1465-1488, (2004) · Zbl 1047.83002
[28] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484, (1984) · Zbl 0536.65071
[31] Brown, J. D.; Diener, P.; Sarbach, O.; Schnetter, E.; Tiglio, M., Turduckening black holes: an analytical and computational study, Phys. Rev. D, 79, (2009)
[32] Alcubierre, M.; Brandt, S.; Brügmann, B.; Holz, D.; Seidel, E.; Takahashi, R.; Thornburg, J., Symmetry without symmetry: numerical simulation of axisymmetric systems using Cartesian grids, Int. J. Mod. Phys. D, 10, 273-290, (2001)
[33] van der Vorst, H. A., Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631-644, (1992) · Zbl 0761.65023
[34] Szilágyi, B.; Lindblom, L.; Scheel, M. A., Simulations of binary black hole mergers using spectral methods, Phys. Rev. D, 80, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.