×

zbMATH — the first resource for mathematics

Zeros of primitive characters of finite groups. (English) Zbl 07177053
In this paper, the author classifies finite non-solvable groups with a faithful primitive irreducible character vanishing on a unique conjugacy class, using the Classification of the Finite Simple Groups.

MSC:
20C15 Ordinary representations and characters
Software:
CHEVIE; Magma
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bessenrodt and J. R. B. Olsson, Weights of partitions and character zeros, Electron. J. Combin. 11 (2004/06), no. 2, Research Paper 5. · Zbl 1068.20011
[2] W. Bosma, J. Cannon and C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265. · Zbl 0898.68039
[3] T. C. Burness and H. P. Tong-Viet, Derangements in primitive permutation groups, with an application to character theory, Q. J. Math. 66 (2015), no. 1, 63-96. · Zbl 1335.20001
[4] R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Pure Appl. Math. (New York), John Wiley Sons, New York, 1985. · Zbl 0567.20023
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University, Eynsham, 1985. · Zbl 0568.20001
[6] F. Digne and J. Michel, Representations of Finite Groups of Lie Type, London Math. Soc. Stud. Texts 21, Cambridge University, Cambridge, 1991. · Zbl 0815.20014
[7] J. D. Dixon and A. Rahnamai Barghi, Irreducible characters which are zero on only one conjugacy class, Proc. Amer. Math. Soc. 135 (2007), no. 1, 41-45. · Zbl 1112.20007
[8] P. C. Gager, Maximal tori in finite groups of Lie type, PhD thesis, University of Warwick, 1973.
[9] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput., 7 (1996), no. 3, 175-210. · Zbl 0847.20006
[10] R. Guralnick and G. Malle, Products of conjugacy classes and fixed point spaces, J. Amer. Math. Soc. 25 (2012), no. 1, 77-121. · Zbl 1286.20007
[11] B. Huppert and N. Blackburn, Finite Groups. II, Grundlehren Math. Wiss. 242, Springer, Berlin-New York, 1982. · Zbl 0477.20001
[12] C. Lassueur and G. Malle, Simple endotrivial modules for linear, unitary and exceptional groups, Math. Z. 280 (2015), no. 3-4, 1047-1074. · Zbl 1327.20008
[13] C. Lassueur, G. Malle and E. Schulte, Simple endotrivial modules for quasi-simple groups, J. Reine Angew. Math. 712 (2016), 141-174. · Zbl 1397.20022
[14] F. Lübeck and G. Malle, (2,3)-generation of exceptional groups, J. Lond. Math. Soc. (2) 59 (1999), no. 1, 109-122. · Zbl 0935.20021
[15] F. Lübeck and G. Malle, A Murnaghan-Nakayama rule for values of unipotent characters in classical groups, Represent. Theory 20 (2016), 139-161. · Zbl 1376.20015
[16] S. Y. Madanha, On a question of Dixon and Rahnamai Barghi, Comm. Algebra 47 (2019), no. 8, 3064-3075. · Zbl 07072599
[17] G. Malle, Almost irreducible tensor squares, Comm. Algebra 27 (1999), no. 3, 1033-1051. · Zbl 0931.20009
[18] G. Malle, G. Navarro and J. R. B. Olsson, Zeros of characters of finite groups, J. Group Theory 3 (2000), no. 4, 353-368. · Zbl 0965.20003
[19] G. Malle, J. Saxl and T. Weigel, Generation of classical groups, Geom. Dedicata 49 (1994), no. 1, 85-116. · Zbl 0832.20029
[20] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Stud. Adv. Math. 133, Cambridge University, Cambridge, 2011.
[21] T. Nagel, Des équations indéterminées \(x^2+x+1=y^n\) et \(x^2+x+1=3y^n\), Norsk. Mat. Foren. Skr. Serie I 2 (1921), 12-14. · JFM 48.0138.01
[22] G. Navarro, Irreducible restriction and zeros of characters, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1643-1645. · Zbl 0967.20006
[23] G. Qian, Finite solvable groups with an irreducible character vanishing on just one class of elements, Comm. Algebra 35 (2007), no. 7, 2235-2240. · Zbl 1127.20008
[24] M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc. 99 (1961), 425-470. · Zbl 0101.01604
[25] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487-513. · Zbl 0471.20013
[26] E. Žmud’, Finite groups having an irreducible complex character with a class of zeros, Dokl. Akad. Nauk SSSR 247 (1979), no. 4, 788-791.
[27] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265-284. · JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.