×

Complete integrability of quantum and classical dynamical systems. (English) Zbl 1436.81036

Summary: It is proved that the Schrödinger equation with any self-adjoint Hamiltonian is unitary equivalent to a set of non-interacting classical harmonic oscillators and in this sense any quantum dynamics is completely integrable. Integrals of motion are presented. A similar statement is proved for classical dynamical systems in terms of Koopman’s approach to dynamical systems. Examples of explicit reduction of quantum and classical dynamics to the family of harmonic oscillators by using direct methods of scattering theory and wave operators are given.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
81Q80 Special quantum systems, such as solvable systems
Full Text: DOI

References:

[1] Arnold, V. I.; Kozlov, V. V.; Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics (1997) · Zbl 0885.70001
[2] Gardner, C. S.; Green, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095 (1967) · Zbl 1061.35520 · doi:10.1103/PhysRevLett.19.1095
[3] Zakharov, V. E.; Faddeev, L. D., Korteweg-de Vries equation: a completely integrable Hamiltonian system, Funct. Anal. Appl., 5, 4, 280-287 (1971) · Zbl 0257.35074 · doi:10.1007/BF01086739
[4] Zakharov, V. E.; Takhtadzhyan, A.; Faddeev, L. D., Complete description of solutions of the’ sine-Gordon’ equation, Soviet Phys. Dokl., 19, 12, 824-826 (1974) · Zbl 0312.35051
[5] Arefeva, I. Ya; Korepin, V., Scattering in two-dimensional model with Lagrangian (1/γ)((∂μu)2/2 + m2(cos u-1)), Pisma JETP Lett., 20, 10, 680-684 (1974)
[6] Kozlov, V. V., Integrability and non-integrability in Hamiltonian mechanics, Russian Math. Surveys, 38, 1, 1-76 (1983) · Zbl 0525.70023 · doi:10.1070/RM1983v038n01ABEH003330
[7] Novikov, S. P.; Zakharov, V. E.; Manakov, S. V.; Pitaevskii, L. P., Theory of Solitons: The Inverse Scattering Method (1984) · Zbl 0598.35002
[8] Takhtadzhyan, L. A.; Faddeev, L. D., Hamiltonian Methods in the Theory of Solitons (1986) · Zbl 0632.58003
[9] Vladimirov, V. S.; Volovich, I. V., Local and nonlocal currents for nonlinear equations, Theor. Math. Phys., 62, 1 (1985) · Zbl 0566.35090 · doi:10.1007/BF01034820
[10] Kozlov, V. V.; Treschev, D. V., Polynomial conservation laws in quantum systems, Theor. Math. Phys., 140, 3, 1283-1298 (2004) · Zbl 1178.81158 · doi:10.1023/B:TAMP.0000039833.30239.34
[11] W. Miller Jr., S. Post and P. Winternitz, “Classical and quantum superintegrability with applications,” arXiv: 1309.2694 [math-ph]. · Zbl 1276.81070
[12] Kozlov, V. V., Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability, Regul. Chaotic Dyn., 23, 1, 26-46 (2018) · Zbl 1400.37061 · doi:10.1134/S1560354718010033
[13] Kozlov, V. V., Linear systems with a quadratic integral and the complete integrability of the Schrödinger equation, Uspekhi. Mat. Nauk, 75, 5, 189-190 (2019) · doi:10.4213/rm9910
[14] Burnol, J-F, Scattering on thep-adic field and a trace formula, Intern. Math. Res. Notices, 2000, 2, 57-70 (2000) · Zbl 1038.11033 · doi:10.1155/S1073792800000040
[15] Vladimirov, V. S.; Volovich, I. V.; Zelenov, E. I., p-Adic Analysis and Mathematical Physics (1994), Singapore: World Scientific, Singapore · Zbl 0812.46076
[16] Dragovich, B.; Khrennikov, A. Yu; Kozyrev, S. V.; Volovich, I. V.; Zelenov, E. I., p-Adic mathematical physics: the first 30 years, p-Adic Numbers Ultramet. Anal. Appl., 9, 2, 87-121 (2017) · Zbl 1394.81009 · doi:10.1134/S2070046617020017
[17] Stockmann, H-J, Quantum Chaos: An Introduction (1999) · Zbl 0940.81019
[18] Dunford, N.; Schwartz, J. T., Linear Operators. Part II. Spectral Theory (1963), New York: Interscience, New York · Zbl 0128.34803
[19] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, I. Functional Analysis (1972) · Zbl 0242.46001
[20] Simon, B., Wave operators for classical particle scattering, Commun. Math. Phys., 23, 37 (1971) · Zbl 0238.70012 · doi:10.1007/BF01877595
[21] Derezinskiand, J.; Gerard, C., Scattering Theory of Classical and Quantum N-Particle Systems (1997) · Zbl 0899.47007
[22] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, III. Scattering Theory (1979) · Zbl 0405.47007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.