Jarušek, Jiří Solvability of a dynamic rational contact with limited interpenetration for viscoelastic plates. (English) Zbl 07177871 Appl. Math., Praha 65, No. 1, 43-65 (2020). Summary: Solvability of the rational contact with limited interpenetration of different kind of viscoelastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical (“short memory”) form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero. Cited in 1 Document MSC: 35Q74 PDEs in connection with mechanics of deformable solids 74D10 Nonlinear constitutive equations for materials with memory 74H20 Existence of solutions of dynamical problems in solid mechanics 74K20 Plates 74M15 Contact in solid mechanics Keywords:dynamic contact problem; limited interpenetration; viscoelastic plate; existence of solution PDF BibTeX XML Cite \textit{J. Jarušek}, Appl. Math., Praha 65, No. 1, 43--65 (2020; Zbl 07177871) Full Text: DOI arXiv OpenURL References: [1] Bock, I.; Jarušek, J., Unilateral dynamic contact of viscoelastic von Kármán plates, Adv. Math. Sci. Appl. 16 (2006), 175-187 · Zbl 1110.35049 [2] Bock, I.; Jarušek, J., Unilateral dynamic contact of von Kármán plates with singular memory, Appl. Math., Praha 52 (2007), 515-527 · Zbl 1164.35447 [3] Bock, I.; Jarušek, J., Dynamic contact problem for a bridge modeled by a viscoelastic full von Kármán system, Z. Angew. Math. Phys. 61 (2010), 865-876 · Zbl 1273.74352 [4] Bock, I.; Jarušek, J., Unilateral dynamic contact problem for viscoelastic Reissner-Mindlin plates, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 4192-4202 · Zbl 1402.74068 [5] Borwein, J. M.; Zhu, Q. J., Techniques of Variational Analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 20, Springer, New York (2005) · Zbl 1076.49001 [6] Eck, C.; Jarušek, J.; Krbec, M., Unilateral Contact Problems. Variational Methods and Existence Theorems, Pure and Applied Mathematics (Boca Raton) 270, Chapman & Hall/CRC, Boca Raton (2005) · Zbl 1079.74003 [7] Eck, C.; Jarušek, J.; Stará, J., Normal compliance contact models with finite interpenetration, Arch. Ration. Mech. Anal. 208 (2013), 25-57 · Zbl 1320.74083 [8] Jarušek, J., Static semicoercive normal compliance contact problem with limited interpenetration, Z. Angew. Math. Phys. 66 (2015), 2161-2172 · Zbl 1327.35364 [9] Jarušek, J.; Stará, J., Solvability of a rational contact model with limited interpenetration in viscoelastodynamics, Math. Mech. Solids 23 (2018), 1040-1048 · Zbl 1401.74218 [10] Koch, H.; Stachel, A., Global existence of classical solutions to the dynamical von Kármán equations, Math. Methods Appl. Sci. 16 (1993), 581-586 · Zbl 0778.73029 [11] Lagnese, J. E., Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics 10, Society for Industrial and Applied Mathematics, Philadelphia (1989) · Zbl 0696.73034 [12] Signorini, A., Sopra alcune questioni di statica dei sistemi continui, Ann. Sc. Norm. Super. Pisa, II. Ser. 2 (1933), 231-251 Italian \99999JFM99999 59.0738.01 · JFM 59.0738.01 [13] Signorini, A., Questioni di elasticità non linearizzata e semilinearizzata, Rend. Mat. Appl., V. Ser. 18 (1959), 95-139 Italian · Zbl 0091.38006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.