×

Estimation and inference for area-wise spatial income distributions from grouped data. (English) Zbl 07178849

Summary: Estimating income distributions plays an important role in the measurement of inequality and poverty over space. The existing literature on income distributions predominantly focuses on estimating an income distribution for a country or a region separately and the simultaneous estimation of multiple income distributions has not been discussed in spite of its practical importance. To overcome the difficulty, effective methods are proposed for the simultaneous estimation and inference for area-wise spatial income distributions taking account of geographical information from grouped data. An efficient Bayesian approach to estimation and inference for area-wise latent parameters are developed, which gives area-wise summary measures of income distributions such as mean incomes and Gini indices, not only for sampled areas but also for areas without any samples thanks to the latent spatial state-space structure. The proposed method is demonstrated using the Japanese municipality-wise grouped income data. The simulation studies show the superiority of the proposed method to a crude conventional approach which estimates the income distributions separately. R code implementing the proposed methods is available at https://github.com/sshonosuke/SPID.

MSC:

62-XX Statistics

Software:

GitHub; SPID
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Atoda, N.; Suruga, T.; Tachibanaki, T., Statistical inference of functional forms for income distribution, Econ. Stud. Quart., 39, 14-40 (1988)
[2] Besag, J., Spatial interaction and the statistical analysis of lattice systems, J. R. Stat. Soc. Ser. B Stat. Methodol., 36, 192-236 (1974) · Zbl 0327.60067
[3] Besag, J.; Green, P.; Higdon, D.; Mengersen, K., Bayesian computation and stochastic systems, Statist. Sci., 10, 3-41 (1995) · Zbl 0955.62552
[4] Besag, J.; Kooperberg, C., On conditional and intrinsic autoregression, Biometrika, 82, 733-746 (1995) · Zbl 0899.62123
[5] Chhikara, R. S.; Folks, L., The Inverse Gaussian Distribution: Theory, Methodology, and Applications (1989), Marcel Dekker: Marcel Dekker New York · Zbl 0701.62009
[6] Modeling Income Distributions and Lorenz Curves (2008), Springer: Springer New York
[7] Chotikapanich, D.; Griffiths, W. E.; Rao, D. S.P., Estimating and combining national income distributions using limited data, J. Bus. Econom. Statist., 25, 97-109 (2007)
[8] Chotikapanich, D.; Griffiths, W. E.; Rao, D. S.P.; Valencia, V., Global income distributions and inequality, 1993 and 2000: incorporating country-level inequality modelled with beta distributions, Rev. Econ. Stat., 94, 52-73 (2012)
[9] Gelfand, A. E.; Ghosh, S. K., Model choice: a minimum posterior predictive loss approach, Biometrika, 85, 1-11 (1998) · Zbl 0904.62036
[10] Griffiths, W.; Hajargasht, G., On GMM estimation of distributions from grouped data, Econom. Lett., 126, 122-126 (2015) · Zbl 1321.62143
[11] Hajargasht, G.; Griffiths, W., Pareto-lognormal distributions: Inequality, poverty, and estimation from grouped income data, Econ. Model., 33, 593-604 (2013)
[12] Hajargasht, G.; Griffiths, W. E.; Brice, J.; Rao, D. S.P.; Chotikapanich, D., Inference for income distributions using grouped data, J. Bus. Econom. Statist., 30, 563-575 (2012)
[13] Kakamu, K., Simulation studies comparing dagumand Singh-Maddala income distribution, Comput. Econ., 48, 593-605 (2019)
[14] Kawakubo, Y.; Kobayashi, G., Small area estimation for grouped data (2019)
[15] Kleiber, C.; Kotz, S., Statistical Size Distributions in Economics and Actuarial Sciences (2003), Wiley: Wiley New York · Zbl 1044.62014
[16] Li, Q.; Lin, N., The Bayesian elastic net, Bayesian Anal., 5, 151-170 (2010) · Zbl 1330.65026
[17] McDonald, J. B., Some generalized functions for the size distribution of income, Econometrica, 52, 647-663 (1984) · Zbl 0557.62098
[18] McDonald, J. B., Some generalized functions for the size distribution of income, (Chotikapanich, D., Modeling Income Distributions and Lorenz Curves (2008), Springer: Springer New York) · Zbl 1151.91655
[19] McDonald, J. B.; Xu, Y. J., A generalization of the beta distribution with applications, J. Econometrics, 66, 133-152 (1995) · Zbl 0813.62011
[20] Nishino, H.; Kakamu, K., A random walk stochastic volatility model for income inequality, Japan World Economy, 36, 21-28 (2015)
[21] Nishino, H.; Kakamu, K.; Oga, T., Bayesian estimation of persistent income inequality by lognormal stochastic volatility model, J. Income Distrib., 21, 88-101 (2012)
[22] Park, T.; Casella, G., The Bayesian Lasso, J. Amer. Statist. Assoc., 103, 681-686 (2008) · Zbl 1330.62292
[23] Singh, S. K.; Maddala, G. S., A function for size distribution of income, Econometrica, 47, 1513-1525 (1976)
[24] Welling, M., Teh, Y.W., 2011. Bayesian learning via stochastic gradient Langevin dynamics. In: International Conference on Machine Learning, ICML 2011.
[25] Wu, X.; Perloff, J., GMM Estimation of a maximum entropy distribution with interval data, J. Econometrics, 138, 532-546 (2007) · Zbl 1418.62026
[26] Xu, X.; Ghosh, M., Bayesian variable selection and estimation for group lasso, Bayesian Anal., 10, 909-936 (2015) · Zbl 1334.62132
[27] Yin, G., Bayesian generalized method of moments, Bayesian Anal., 4, 191-208 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.