×

zbMATH — the first resource for mathematics

A reduced order variational multiscale approach for turbulent flows. (English) Zbl 1435.65165
Summary: The purpose of this work is to present different reduced order model strategies starting from full order simulations stabilized using a residual-based variational multiscale (VMS) approach. The focus is on flows with moderately high Reynolds numbers. The reduced order models (ROMs) presented in this manuscript are based on a POD-Galerkin approach. Two different reduced order models are presented, which differ on the stabilization used during the Galerkin projection. In the first case, the VMS stabilization method is used at both the full order and the reduced order levels. In the second case, the VMS stabilization is used only at the full order level, while the projection of the standard Navier-Stokes equations is performed instead at the reduced order level. The former method is denoted as consistent ROM, while the latter is named non-consistent ROM, in order to underline the different choices made at the two levels. Particular attention is also devoted to the role of inf-sup stabilization by means of supremizers in ROMs based on a VMS formulation. Finally, the developed methods are tested on a numerical benchmark.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76F65 Direct numerical and large eddy simulation of turbulence
Software:
RBniCS; FEniCS; redbKIT; SyFi
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] RBniCS - reduced order modelling in FEniCS, http://mathlab.sissa.it/rbnics (2015)
[2] Akhtar, I.; Nayfeh, Ah; Ribbens, Cj, On the stability and extension of reduced-order Galerkin models in incompressible flows, Theor. Comput. Fluid Dyn., 23, 3, 213-237 (2009) · Zbl 1234.76040
[3] Ali, S., Ballarin, F., Rozza, G.: Reduced basis stabilization for the unsteady stokes and Navier-Stokes equations. In: Preparation (2019)
[4] Ali, S.: Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations. Submitted 2019 (2019)
[5] Ballarin, F.; Manzoni, A.; Quarteroni, A.; Rozza, G., Supremizer stabilization of POD-galerkin approximation of parametrized steady incompressible Navier-Stokes equations, Int. J. Numer. Methods Eng., 102, 5, 1136-1161 (2015) · Zbl 1352.76039
[6] Barrault, M.; Maday, Y.; Nguyen, Nc; Patera, A., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339, 9, 667-672 (2004) · Zbl 1061.65118
[7] Bazilevs, Y.; Calo, Vm; Cottrell, Ja; Hughes, Tjr; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large Eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197, 1-4, 173-201 (2007) · Zbl 1169.76352
[8] Benner, P., Ohlberger, M., Patera, A.T., Rozza, G., Urban, K.: Model reduction of parametrized systems, vol. 1st ed. 2017, MS&A series, no. Vol. 17, Springer (2017) · Zbl 1381.65001
[9] Bergmann, M.; Bruneau, C-H; Iollo, A., Enablers for robust POD models, J. Comput. Phys., 228, 2, 516-538 (2009) · Zbl 1409.76099
[10] Boffi, Daniele; Brezzi, Franco; Fortin, Michel, Mixed Finite Element Methods and Applications (2013), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1277.65092
[11] Brezzi, F.; Bristeau, M-O; Franca, Lp; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the galerkin method with bubble functions, Comput. Methods Appl. Mech. Eng., 96, 1, 117-129 (1992) · Zbl 0756.76044
[12] Caiazzo, A.; Iliescu, T.; John, V.; Schyschlowa, S., A numerical investigation of velocity-pressure reduced order models for incompressible flows, J. Comput. Phys., 259, 598-616 (2014) · Zbl 1349.76050
[13] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[14] Chacón Rebollo, T.; Delgado Ávila, E.; Gómez Mármol, M.; Ballarin, F.; Rozza, G., On a certified Smagorinsky reduced basis turbulence model, SIAM J. Numer. Anal., 55, 6, 3047-3067 (2017) · Zbl 1380.65339
[15] Chacón Rebollo, T.; Gómez Mármol, M.; Rubino, S., Numerical analysis of a finite element projection-based VMS turbulence model with wall laws, Comput. Methods Appl. Mech. Eng., 285, 379-405 (2015) · Zbl 1423.76218
[16] Chinesta, F., Huerta, A., Rozza, G., Willcox, K.: Model order reduction, encyclopedia of computational mechanics. Elsevier Editor, 2016 (2016)
[17] Codina, R., Badia, S., Baiges, J., Principe, J.: Variational multiscale methods in computational fluid dynamics, Encyclopedia of computational mechanics (2017)
[18] Davidson, P., Turbulence: an introduction for scientists and engineers (2004), New York: Oxford University Press, New York · Zbl 1061.76001
[19] Deane, Ae; Kevrekidis, Ig; Karniadakis, Ge; , Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders, Phys. Fluids A, 3, 10, 2337-2354 (1991) · Zbl 0746.76021
[20] Fick, L., Maday, Y., Patera, A., Taddei, T.: A reduced basis technique for long-time unsteady turbulent flows. Journal of Computational Physics (submitted) (2017)
[21] Forti, D.; Dedè, L., Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS-LES modeling in a high performance computing framework, Comput. Fluids, 117, 168-182 (2015) · Zbl 1390.76149
[22] Gerner, A-L; Veroy, K., Certified reduced basis methods for parametrized saddle point problems, SIAM J. Sci. Comput., 34, 5, A2812-A2836 (2012) · Zbl 1255.76024
[23] Giere, S.; Iliescu, T.; John, V.; Wells, D., SUPG reduced order models for convection-dominated convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 289, 454-474 (2015) · Zbl 1425.65111
[24] Gravemeier, V.; Gee, Mw; Kronbichler, M.; Wall, Wa, An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow, Comput. Methods Appl. Mech. Eng., 199, 13-16, 853-864 (2010) · Zbl 1406.76027
[25] Hijazi, S., Ali, S., Stabile, G., Ballarin, F., Rozza, G.: The effort of increasing Reynolds number in projection-based reduced order methods: from laminar to turbulent flows. In: Press, FEF proc. (2017)
[26] Hijazi, S., Stabile, G., Mola, A., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows. In: Preparation (2019) · Zbl 1383.35175
[27] Hughes, Tjr, Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 1-4, 387-401 (1995) · Zbl 0866.76044
[28] Hughes, Tjr; Feijóo, Gr; Mazzei, L.; Quincy, J-B, The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[29] Hughes, T.J.R., Scovazzi, G., Franca, L.P.: Multiscale and stabilized methods, vol. 3 (Chapter 4), Wiley Online Library (2004)
[30] Hughes, Tjr; Stewart, Jr, A space-time formulation for multiscale phenomena, J. Comput. Appl. Math., 74, 1-2, 217-229 (1996) · Zbl 0869.65061
[31] Iliescu, T.; Wang, Z., Variational multiscale proper orthogonal decomposition: convection-dominated convection-diffusion-reaction equations, Math. Comput., 82, 283, 1357-1378 (2013) · Zbl 1336.76017
[32] Iliescu, T., Variational multiscale proper orthogonal decomposition: Navier-stokes equations, Numer. Methods Partial Differential Equations, 30, 2, 641-663 (2014) · Zbl 1452.76048
[33] Iollo, A.; Lanteri, S., Approximation of compressible flows by a reduced order model, 55-60 (1998), Berlin: Springer, Berlin
[34] Iollo, A.; Lanteri, S.; Désidéri, J-A, Stability properties of POD-galerkin approximations for the compressible Navier-Stokes equations, Theor. Comput. Fluid Dyn., 13, 6, 377-396 (2000) · Zbl 0987.76077
[35] Ito, K.; Ravindran, Ss, A reduced-order method for simulation and control of fluid flows, J. Comput. Phys., 143, 2, 403-425 (1998) · Zbl 0936.76031
[36] Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. Springer International Publishing (2016) · Zbl 1329.65203
[37] Karatzas, En; Stabile, G.; Nouveau, L.; Scovazzi, G.; Rozza, G., A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a stokes flow, Comput. Methods Appl. Mech. Eng., 347, 568-587 (2019)
[38] Karatzas, E.N., Ballarin, F., Rozza, G.: Projection-based reduced order models for a cut finite element method in parametrized domains. Submitted - arXiv:1901.03846 (2019)
[39] Karatzas, E.N., Stabile, G., Atallah, N., Rozza, G., Scovazzi, G.: A reduced order approach for the embedded shifted boundary FEM and a heat exchange system on parametrized geometries. Accepted - arXiv:1807.07753.pdf (2018) · Zbl 1442.65376
[40] Logg, A., Mardal, K.-A., Wells, G.: Automated solution of differential equations by the finite element method: the Fenics book, vol. 84, Springer Science & Business Media (2012) · Zbl 1247.65105
[41] Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G., POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput. Methods Appl. Mech. Eng., 311, 151-179 (2016)
[42] Masud, A.; Scovazzi, G., A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations, Int. J. Numer. Methods Fluids, 65, 1-3, 28-42 (2011) · Zbl 1432.76202
[43] Noack, Br; Eckelmann, H., A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder, Phys. Fluids, 6, 1, 124-143 (1994) · Zbl 0826.76071
[44] Pacciarini, P.; Rozza, G., Stabilized reduced basis method for parametrized advection-diffusion PDEs, Comput. Methods Appl. Mech. Eng., 274, 1-18 (2014) · Zbl 1296.65165
[45] Peterson, Js, The reduced basis method for incompressible viscous flow calculations, SIAM J. Sci. Stat. Comput., 10, 4, 777-786 (1989) · Zbl 0672.76034
[46] Pope, Sb, Turbulent flows (2001), Cambridge: Cambridge University Press, Cambridge
[47] Quarteroni, A., Manzoni, A., Negri, A.: Reduced basis methods for partial differential equations. Springer International Publishing (2016) · Zbl 1337.65113
[48] Quarteroni, A.; Valli, A., Numerical approximation of partial differential equations, vol. 23 (2008), Berlin: Springer, Berlin · Zbl 1151.65339
[49] Rozza, G.; Veroy, K., On the stability of the reduced basis method for Stokes equations in parametrized domains, Comput. Methods Appl. Mech. Eng., 196, 7, 1244-1260 (2007) · Zbl 1173.76352
[50] Sagaut, P.: Large Eddy simulation for incompressible flows. 3rd. Springer, Berlin (2006) · Zbl 1091.76001
[51] Sirisup, S.; Karniadakis, Ge, Stability and accuracy of periodic flow solutions obtained by a POD-penalty method, Physica D: Nonlinear Phenomena, 202, 3-4, 218-237 (2005) · Zbl 1070.35024
[52] Stabile, G.; Hijazi, S.; Mola, A.; Lorenzi, S.; Rozza, G., POD-Galerkin reduced order methods for CFD using finite Volume Discretisation: vortex shedding around a circular cylinder, Communication in Applied Industrial Mathematics, 8, 1, 210-236 (2017) · Zbl 1383.35175
[53] Stabile, Giovanni; Rozza, Gianluigi, Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Computers & Fluids, 173, 273-284 (2018) · Zbl 1410.76264
[54] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Eng., 237-240, 10-26 (2012) · Zbl 1253.76050
[55] Willcox, K., Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition, Comput. Fluids, 35, 2, 208-226 (2006) · Zbl 1160.76394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.