zbMATH — the first resource for mathematics

Some new refinement of Hermite-Hadamard type inequalities and their applications. (English) Zbl 1435.26024
Summary: In this paper first, we prove some new refinement of Hermite-Hadamard type inequalities for the convex function \(f\). Second, by using five new integral identities, we present some new Riemann-Liouville fractional trapezoid and midpoint type inequalities. Third, using these results, we present applications to \(f\)-divergence measures. At the end, some new bounds for special means of different positive real numbers and new error estimates for the trapezoidal and midpoint formula are provided as well. These results give us the generalizations and improvements of the earlier results.

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
26A51 Convexity of real functions in one variable, generalizations
26D07 Inequalities involving other types of functions
Full Text: DOI Euclid
[1] Y. M. Chu, M. A. Khan, T. Ali and S. S. Dragomir, Inequalities for \(\alpha \)-fractional differentiable functions, J. Inequal. Appl., 2017(93), (2017), pp. 12. · Zbl 1360.26018
[2] I. Csisźar, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2, (1967), 299-318. · Zbl 0157.25802
[3] S. S. Dragomir, Two mappings in connection to Hadamard’s inequality, J. Math. Anal. Appl., 167(1), (1992), 49-56. · Zbl 0758.26014
[4] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5), (1998), 91-95. · Zbl 0938.26012
[5] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21(3), (1995), 335-341. · Zbl 0834.26009
[6] S. Erden and M. Z. Sarikaya, New Hermite-Hadamard type inequalities for twice differentiable convex mappings via Green function and applications, Moroccan J. Pure Appl. Anal., 2(2), (2016), 107-117. · Zbl 06750244
[7] J. Hadamard, Étude sur les propriétés des fonctions entières et an particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 58, (1893), 171-215. · JFM 25.0698.03
[8] M. A. Khan, T. Ali and T. U. Khan, Hermite-Hadamard type inequalities with applications, Fasc. Math., 59, (2017), 57-74. · Zbl 1386.26029
[9] M. A. Khan, Y. M. Chu, A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for \(MT_{(r;g,m,\varphi)}\)-preinvex functions, J. Comput. Anal. Appl., 26(8), (2019), 1487-1503.
[10] M. A. Khan, Y. Khurshid, T. Ali and N. Rehman, Inequalities for three times differentiable functions, Punjab Univ. J. Math., 48(2), (2016), 35-48. · Zbl 1357.26036
[11] M. A. Khan, Y. Khurshid and T. Ali, Hermite-Hadamard inequality for fractional integrals via \(\eta \)-convex functions, Acta Math. Univ. Comenian., 86(1), (2017), 153-164. · Zbl 1374.26056
[12] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147, (2004), 137-146. · Zbl 1034.26019
[13] M. Kunt, D. Karapinar, S. Turhan and \.I. \.Işcan, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions, J. Inequal. Spec. Funct., 9(1), (2018), 45-57. · Zbl 1424.26023
[14] W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for \(MT\)-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9, (2016), 766-777. · Zbl 1329.26014
[15] C. Luo, T. S. Du, M. A. Khan, A. Kashuri and Y. Shen, Some \(k\)-fractional integrals inequalities through generalized \(\lambda_{\phi m}-MT\)-preinvexity, J. Comput. Anal. Appl., 27(4), (2019), 690-705.
[16] C. E. M. Pearce, J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13, (2000), 51-55. · Zbl 0970.26016
[17] A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York 1973. · Zbl 0271.26009
[18] M. Z. Sarikaya, A. Saglam and H. Yildirim, On some Hadamard-type inequalities for \(h\)-convex functons, J. Math. Inequal., 2(3), (2008), 335-341. · Zbl 1166.26302
[19] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Başak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57, (2013), 2403-2407. · Zbl 1286.26018
[20] H. Shioya and T. Da-te, A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78(7), (1995), 37-40.
[21] Y. Zhang, T. S. Du, H. Wang, Y. J. Shen and A. Kashuri, Extensions of different type parameterized inequalities for generalized \((m,h)\)-preinvex mappings via \(k\)-fractional integrals, J. Inequal. Appl., 2018(49), (2018), pp. 30. · Zbl 1404.26011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.