×

Extending Huppert’s conjecture to almost simple groups of Lie type. (English) Zbl 1480.20020

Summary: Let \(G\) be a finite group and \(\text{cd}(G)\) be the set of all irreducible complex character degrees of \(G\) without multiplicities. The aim of this paper is to propose an extension of Huppert’s conjecture from non-Abelian simple groups to almost simple groups of Lie type. Indeed, we conjecture that if \(H\) is an almost simple group of Lie type with \(\text{cd}(G)=\text{cd}(H)\), then there exists an Abelian normal subgroup \(A\) of \(G\) such that \(G/A\cong H\). It is furthermore shown that \(G\) is not necessarily the direct product of \(H\) and \(A\). In view of Huppert’s conjecture, we also show that the converse implication does not necessarily hold for almost simple groups. Finally, in support of this conjecture, we will confirm it for projective general linear and unitary groups of dimension 3.

MSC:

20C15 Ordinary representations and characters
20C33 Representations of finite groups of Lie type
20D06 Simple groups: alternating groups and groups of Lie type
20G40 Linear algebraic groups over finite fields

References:

[1] S. H. Alavi, A. Daneshkhah, and A. Jafari, Groups with the same character degrees as sporadic almost simple groups, Bull. Aust. Math. Soc. 94 (2016), no. 2, 254-265. · Zbl 1398.20009 · doi:10.1017/S0004972716000253
[2] S. H. Alavi, A. Daneshkhah, and A. Jafari, On groups with the same character degrees as almost simple groups with socle Mathieu groups, Rend. Semin. Mat. Univ. Padova. 138 (2017), 115-127. · Zbl 1380.20007 · doi:10.4171/RSMUP/138-6
[3] C. Bessenrodt, H. N. Nguyen, J. B. Olsson, and H. P. Tong-Viet, Complex group algebras of the double covers of the symmetric and alternating groups, Algebra Number Theory 9 (2015), no. 3, 601-628. · Zbl 1321.20011 · doi:10.2140/ant.2015.9.601
[4] C. Bessenrodt, H. P. Tong-Viet, and J. Zhang, Huppert’s conjecture for alternating groups, J. Algebra 470 (2017), 353-378. · Zbl 1361.20013 · doi:10.1016/j.jalgebra.2016.09.012
[5] M. Bianchi, D. Chillag, M. Lewis, and E. Pacifici, Character degree graphs that are complete graphs, Proc. Amer. Math. Soc. 135 (2007), 671-676. · Zbl 1112.20006 · doi:10.1090/S0002-9939-06-08651-5
[6] J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser. 407, Cambridge University Press, Cambridge, 2013. · Zbl 1303.20053
[7] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, New York, 1985. · Zbl 0567.20023
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford Univ. Press, Oxford, 1984. · Zbl 0568.20001
[9] S. Dolfi, G. Navarro, and P. H. Tiep, Primes dividing the degrees of the real characters, Math. Z. 259 (2008), 755-774. · Zbl 1149.20006 · doi:10.1007/s00209-007-0247-8
[10] W. Feit, Extending Steinberg characters, Contemp. Math. 153 (1993), 1-9. · Zbl 0823.20013
[11] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of Finite Simple Groups, Math. Surveys Monogr. 3, Amer. Math. Soc., Providence, RI, 1998. · Zbl 0890.20012
[12] B. Huppert, Some simple groups which are determined by the set of their character degrees, I, Illinois J. Math. 44 (2000), no. 4, 828-842. · Zbl 0972.20006 · doi:10.1215/ijm/1255984694
[13] B. Huppert, Some simple groups, which are determined by the set of their character degrees, III, technical report, Institut für Experimentelle Mathematik, Universät Duisburg-Essen, 2000. · Zbl 0972.20006 · doi:10.1215/ijm/1255984694
[14] B. Huppert, Some simple groups, which are determined by the set of their character degrees, IV, technical report, Institut für Experimentelle Mathematik, Universät Duisburg-Essen, 2000. · Zbl 0972.20006 · doi:10.1215/ijm/1255984694
[15] B. Huppert and W. Lempken, “Simple groups of order divisible by at most four primes” in Proceedings of the F. Scorina Gomel State University, Vol. 16 (Gomel, Belarus), 2000, 64-75. · Zbl 1159.20303
[16] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976. · Zbl 0337.20005
[17] I. M. Isaacs, G. Malle, and G. Navarro, A reduction theorem for the McKay conjecture, Invent. Math. 170 (2007), no. 1, 33-101. · Zbl 1138.20010 · doi:10.1007/s00222-007-0057-y
[18] M. Lewis, Solvable groups whose degree graphs have two connected components, J. Group Theory 4 (2001), no. 3, 255-275. · Zbl 0998.20009 · doi:10.1515/jgth.2001.023
[19] F. Lübeck, Data for finite groups of Lie type and related algebraic groups, http://www.math.rwth-aachen.de/ Frank.Luebeck/chev/index.html. · Zbl 1011.20044
[20] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Stud. Adv. Math. 133, Cambridge Univ. Press, Cambridge, 2011. · Zbl 1256.20045
[21] G. Malle and A. E. Zalesskii, Prime power degree representations of quasi-simple groups, Arch. Math. 77 (2001), no. 6, 461-468. · Zbl 0996.20006 · doi:10.1007/PL00000518
[22] G. Michler, “Brauer’s conjecture and the classification of finite simple groups” in Representation Theory II (Ottawa 1984), Lect. Notes Math. 1178, Springer, Berlin, 1986, 129-142. · Zbl 0628.20013
[23] A. Moreto, An answer to a question of Isaacs on character degree graph, Adv. Math. 201 (2006), 90-101. · Zbl 1097.20012 · doi:10.1016/j.aim.2004.11.008
[24] A. Moreto, Complex group algebras of finite groups: Brauer’s problem 1, Adv. Math. 208 (2007), no. 1, 236-248. · Zbl 1109.20008 · doi:10.1016/j.aim.2006.02.006
[25] Q. Meng and J. Zeng, Finite groups whose character degree graph are empty graphs, Algebr. Colloq. 20 (2013), no. 1, 75-80. · Zbl 1280.20009 · doi:10.1142/S1005386713000060
[26] G. Navarro, The set of character degrees of a finite group does not determine its solvability, Proc. Amer. Math. Soc. 143 (2015), no. 13, 989-990. · Zbl 1320.20009 · doi:10.1090/S0002-9939-2014-12321-5
[27] H. N. Nguyen and H. P. Tong-Viet, “Recognition of finite quasi-simple groups by the degrees of their irreducible representations” in Groups St Andrews 2013, London Math. Soc. Lecture Note Ser. 422, Cambridge Univ. Press, Cambridge, 2015, 439-456. · Zbl 1346.20013
[28] H. N. Nguyen, H. P. Tong-Viet, and T. P. Wakefield, Projective special linear groups \(\text{PSL}_4(q)\) are determined by the set of their character degrees, J. Algebra Appl. 11 (2012), no. 6, 1250108, 26 pp. · Zbl 1295.20007 · doi:10.1142/S0219498812501083
[29] H. N. Nguyen, P. R. Majozi, H. P. Tong-Viet, and T. P. Wakefield, Extending Huppert’s conjecture from non-Abelian simple groups to quasi-simple groups, Illinois J. Math. 59 (2015), no. 4, 901-924. · Zbl 1372.20015 · doi:10.1215/ijm/1488186014
[30] F. Shirjian and A. Iranmanesh, Complex group algebras of almost simple groups with socle \(\text{PSL}_n(q)\), Commun. Algebra 46 (2018), no. 2, 552-573. · Zbl 1473.20016 · doi:10.1080/00927872.2017.1324868
[31] W. A. Simpson and J. Sutherland Frame, The character tables for \(\text{SL}(3,q), \text{SU}(3,q^2), \text{PSL}(3,q), \text{PSU}(3,q^2)\), Canad. J. Math. 25 (1973), 486-494. · Zbl 0264.20010 · doi:10.4153/CJM-1973-049-7
[32] R. Springer, The representations of \(\text{GL}(3,q), \text{GL}(4,q), \text{PGL}(3,q)\), and \(\text{PGL}(4,q)\), Canad. J. Math. 3 (1951), 225-235. · Zbl 0042.25602
[33] H. P. Tong-Viet, Simple classical groups of Lie type are determined by their character degrees, J. Algebra 357 (2012), 61-68. · Zbl 1259.20008 · doi:10.1016/j.jalgebra.2012.02.011
[34] H. P. Tong-Viet and T. P. Wakefield, On Huppert’s conjecture for \(^3D_4(q), q\geq 3\), Algebr. Represent. Theory 16 (2013), no. 2, 471-490. · Zbl 1268.20016 · doi:10.1007/s10468-011-9316-0
[35] H. P. Tong-Viet and T. P. Wakefield, On Huppert’s conjecture for \(G_2(q), q\geq 7\), J. Pure Appl. Algebra 216 (2012), no. 12, 2720-2729. · Zbl 1262.20011 · doi:10.1016/j.jpaa.2012.03.028
[36] T. P. Wakefield, Verifying Huppert’s conjecture for \(\text{PSL}_3(q)\) and \(\text{PSU}_3(q^2)\), Commun. Algebra 37 (2009), no. 8, 2887-2906. · Zbl 1185.20014 · doi:10.1080/00927870802625661
[37] T. P. Wakefield, Verifying Huppert’s conjecture for \(^2G_2(q^2)\), Algebr. Represent. Theory 14 (2011), no. 4, 609-623. · Zbl 1257.20009 · doi:10.1007/s10468-009-9206-x
[38] T. P. Wakefield, Verifying Huppert’s conjecture for \(\text{PSp}_4(q)\) when \(q>7\), Algebr. Represent. Theory 15 (2012), no. 3, 427-448. · Zbl 1243.20019 · doi:10.1007/s10468-010-9246-2
[39] D. L. White, Character degrees of extensions of \(\text{PSL}_2(q)\) and \(\text{SL}_2(q)\), J. Group Theory 16 (2013), no. 1, 1-33. · Zbl 1294.20014 · doi:10.1515/jgt-2012-0026
[40] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265-284. · JFM 24.0176.02 · doi:10.1007/BF01692444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.