Shemyakova, Ekaterina Classification of Darboux transformations for operators of the form \(\partial_x\partial_y+a\partial_x+b\partial_y+c\). (English) Zbl 1445.35014 Ill. J. Math. 64, No. 1, 71-92 (2020). Summary: Darboux transformations are nongroup-type symmetries of linear differential operators. One can define Darboux transformations algebraically by the intertwining relation \(ML=L_1M\) or the intertwining relation \(ML=L_1N\) in the cases when the former is too restrictive.Here we show that Darboux transformations for operators of the form \(L=\partial_x\partial_y+a\partial_x+b\partial_y+c\) (sometimes referred to as 2D Schrödinger operators or Laplace operators) are always compositions of atomic Darboux transformations of two different well-studied types of Darboux transformations, provided that the chain of Laplace transformations for the original operator is long enough. Cited in 1 Document MSC: 35A22 Transform methods (e.g., integral transforms) applied to PDEs 35F05 Linear first-order PDEs 35B06 Symmetries, invariants, etc. in context of PDEs 35Q51 Soliton equations 37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems 37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry Keywords:nongroup-type symmetries PDF BibTeX XML Cite \textit{E. Shemyakova}, Ill. J. Math. 64, No. 1, 71--92 (2020; Zbl 1445.35014) Full Text: DOI arXiv Euclid OpenURL References: [1] V. È. Adler, V. G. Marikhin, and A. B. Shabat, Lagrangian lattices and canonical Bäcklund transformations, Theoret. and Math. Phys. 129 (2001), no. 2, 1448-1465. · Zbl 1029.37042 [2] C. Athorne, Laplace maps and constraints for a class of third-order partial differential operators, J. Phys. A 51 (2018), no. 8, 085205. · Zbl 1391.35012 [3] V. G. Bagrov and B. F. Samsonov, Darboux transformation, factorization and supersymmetry in one-dimensional quantum mechanics, Theoret. and Math. Phys. 104 (1995), no. 2, 1051-1060. · Zbl 0857.34070 [4] V. G. Bagrov and B. F. Samsonov, Darboux transformation of the Schrödinger equation, Phys. Part. Nucl. 28 (1997), no. 4, 374-397. [5] Y. Berest and A. Veselov, On the structure of singularities of integrable Schrödinger operators, Lett. Math. Phys. 52 (2000), no. 2, 103-111. · Zbl 0969.47018 [6] Y. Y. Berest and A. P. Veselov, Singularities of the potentials of exactly solvable Schrödinger equations, and the Hadamard problem, Russian Math. Surveys 53 (1997), no. 1, 208-209. · Zbl 0918.35041 [7] F. Cannata, M. Ioffe, G. Junker, and D. Nishnianidze, Intertwining relations of non-stationary Schrödinger operators, J. Phys. A 32 (1999), no. 19, 3583. · Zbl 0962.81003 [8] F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Physics Rep. 251 (1995), nos. 5-6, 267-385. · Zbl 0988.81001 [9] M. M. Crum, Associated Sturm-Liouville systems, Q. J. Math. 6 (1955), no. 1, 121-127. · Zbl 0065.31901 [10] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Vol. 2, Gauthier-Villars, Paris, 1889. · JFM 53.0659.02 [11] E. Doktorov and S. Leble, A Dressing Method in Mathematical Physics, Math. Phys. Stud. 28, Springer Dordrecht, 2007. · Zbl 1142.35002 [12] P. Etingof, I. Gelfand, and V. Retakh, Factorization of differential operators, quasideterminants, and nonabelian Toda field equations, Math. Res. Lett. 4 (1997), nos. 2-3, 413-425. · Zbl 0959.37054 [13] M. Fels and P. J. Olver, Moving coframes, I: A practical algorithm, Acta Appl. Math. 51 (1998), no. 2, 161-213. · Zbl 0937.53012 [14] M. Fels and P. J. Olver, Moving coframes, II: Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), no. 2, 127-208. · Zbl 0937.53013 [15] E. I. Ganzha, “Intertwining Laplace transformations of linear partial differential equations” in Algebraic and Algorithmic Aspects of Differential and Integral Operators: 5th International Meeting (Sofia, Bulgaria), Selected and Invited Papers, Springer, Berlin, 2014, 96-115. · Zbl 1375.35010 [16] S. Hill, E. Shemyakova, and T. Voronov, Darboux transformations for differential operators on the superline, Russian Math. Surveys 70 (2015), no. 6, 207-208. · Zbl 1343.37073 [17] D. Hobby and E. Shemyakova, Classification of multidimensional Darboux transformations: First order and continued type, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), 010, 20 pp. · Zbl 1359.16021 [18] G. Hovhannisyan, O. Ruff, and Z. Zhang, Higher dimensional Darboux transformations, J. Math. Anal. Appl. 464 (2018), no. 1, 776-805. · Zbl 1394.35007 [19] G. Hovhannisyan and O. Ruff, Darboux transformations on a space scale, J. Math. Anal. Appl. 434 (2016), no. 2, 1690-1718. · Zbl 1329.35014 [20] L. Infeld and T. E. Hull, The factorization method, Rev. Mod. Phys. 23 (1951), no. 1, 21-68. · Zbl 0043.38602 [21] M. V. Ioffe, Supersymmetrical separation of variables in two-dimensional quantum mechanics, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), 075, 10 pp. · Zbl 1217.81099 [22] C. X. Li and J. J. C. Nimmo, Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation, Proc. Roy. Soc. A Math. Phys. Eng. Sci. 466 (2010), no. 2120, 2471-2493. · Zbl 1194.35374 [23] S. Li, E. Shemyakova, and T. Voronov, Differential operators on the superline, Berezinians, and Darboux transformations, Lett. Math. Phys. 107 (2017), no. 9, 1689-1714. · Zbl 1394.16027 [24] Q. P. Liu, Darboux transformations for supersymmetric Korteweg-de Vries equations, Lett. Math. Phys. 35 (1995), no. 2, 115-122. · Zbl 0834.35110 [25] Q. P. Liu and M. Mañas, Crum transformation and Wronskian type solutions for supersymmetric KdV equation, Phys. Lett. B 396 (1997), nos. 1-4, 133-140. [26] Q. P. Liu and M. Mañas, Darboux transformation for the Manin-Radul supersymmetric KdV equation, Phys. Lett. B 394 (1997), nos. 3-4, 337-342. [27] V. B. Matveev, Darboux transformation and explicit solutions of the Kadomtsev-Petviashvili equation, depending on functional parameters, Lett. Math. Phys. 3 (1979), no. 3, 213-216. · Zbl 0418.35005 [28] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dyn., Springer-Verlag, Berlin, 1991. · Zbl 0744.35045 [29] S. P. Novikov and I. A. Dynnikov, Discrete spectral symmetries of small-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds, Russian Math. Surveys 52 (1997), no. 5, 1057-1116. · Zbl 0928.35107 [30] P. J. Olver and J. Pohjanpelto, Differential invariant algebras of Lie pseudo-groups, Adv. Math. 222 (2009), no. 5, 1746-1792. · Zbl 1194.58018 [31] B. F. Samsonov, On the \(N\)-th order Darboux transformation, Russian Math. (Iz. VUZ) 43 (1999), no. 6, 62-65. [32] E. Schrödinger, Further studies of eigenvalue problems by factorization, Proc. Roy. Ir. Acad. A 46 (1940),183-206. · Zbl 0063.06818 [33] A. Shabat, The infinite-dimensional dressing dynamical system, Inverse Problems 8 (1992), no. 2, 303-308. · Zbl 0762.35098 [34] A. B. Shabat, On the theory of Laplace-Darboux transformations, Theoret. Math. Phys. 103 (1995), no. 1, 482-485. · Zbl 0855.35004 [35] E. Shemyakova, Invertible Darboux transformations, SIGMA Symmetry, Integrability Geom. Meth. Appl. 9 (2013), 002, 10 pp. [36] E. Shemyakova, Proof of the completeness of Darboux Wronskian formulae for order two, Canad. J. Math. 65 (2013), no. 3, 655-674. · Zbl 1275.53088 [37] E. Shemyakova, “Orbits of Darboux groupoid for hyperbolic operators of order three” in Geometric Methods in Physics, Trends Math., Springer, Basel, 2015. · Zbl 1366.70022 [38] E. Shemyakova and E. L. Mansfield, “Moving frames for Laplace invariants” in Proceedings of the Twenty-First International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2008, 295-302. [39] E. S. Shemyakova, Darboux transformations for factorizable Laplace operators, Program. Comput. Softw. 40 (2014), 151-157. Translated from Programmirovanie 40 (2014), no. 3. · Zbl 1311.35004 [40] S. V. Smirnov, Factorization of Darboux-Laplace transformations for discrete hyperbolic operators, Theoret. Math. Phys. 119 (2019), no. 2, 621-636. · Zbl 1439.44003 [41] S. P. Tsarev, Factorization of linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations, Theoret. Math. Phys. 122 (2000), no. 1, 121-133. [42] S. P. Tsarev and E. Shemyakova, “Differential transformations of parabolic second-order operators in the plane” in Proceedings of the Steklov Institute of Mathematics 266 (2009), no. 1, 219-227. · Zbl 1188.35008 [43] A. P. Veselov and A. B. Shabat, A dressing chain and the spectral theory of the Schrödinger operator, Funct. Anal. Appl. 27 (1993), no. 2, 81-96. · Zbl 0813.35099 [44] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692. · Zbl 0499.53056 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.