×

Towards computerized proofs of identities. (English) Zbl 0718.05010

R. W. Gosper jun. [Proc. Natl. Acad. Sci. USA 75, 40-42 (1978; Zbl 0384.40001)] gave a finite algorithm for proving indefinite hypergeometric sum identities. In the present paper the authors describe some new steps towards algorithmically deriving and proving definite hypergeometric identities and the more general class of holonomic function identities. This paper relates closely to the authors’ companion paper [J. Am. Math. Soc., No.1, 147-158 (1990; Zbl 0695.05004)].

MSC:

05A19 Combinatorial identities, bijective combinatorics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] George E. Andrews, Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441 – 484. · Zbl 0299.33004
[2] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. · Zbl 0011.02303
[3] I. N. Bernstein, Modules over a ring of differential operators, study of the fundamental solutions of equations with constant coefficients, Functional Anal. Appl. 5 (1974), 89-101. · Zbl 0233.47031
[4] I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26 – 40.
[5] G. D. Birkhoff and W. J. Trjitzinsky, Analytic theory of singular difference equations, Acta Math. 60 (1932), 1-8. · JFM 58.0472.02
[6] J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979.
[7] Shalosh B. Ekhad and Sol Tre, A purely verification proof of the first Rogers-Ramanujan identity, J. Combin. Theory Ser. A 54 (1990), no. 2, 309 – 311. · Zbl 0702.05007
[8] A. Erdélyi et al, The higher transcendental functions, (3 vols.), McGraw-Hill, New York, 1953.
[9] Ira Gessel and Dennis Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13 (1982), no. 2, 295 – 308. · Zbl 0486.33003
[10] R. William Gosper Jr., Decision procedure for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 1, 40 – 42. · Zbl 0384.40001
[11] Henry W. Gould, Combinatorial identities, Henry W. Gould, Morgantown, W.Va., 1972. A standardized set of tables listing 500 binomial coefficient summations. · Zbl 0241.05011
[12] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. · Zbl 0836.00001
[13] Earl D. Rainville, Special functions, The Macmillan Co., New York, 1960. · Zbl 0092.06503
[14] Robert H. Risch, The solution of the problem of integration in finite terms, Bull. Amer. Math. Soc. 76 (1970), 605 – 608. · Zbl 0196.06801
[15] B. M. Trager, On the integration of algebraic functions, Ph.D. thesis, MIT, Cambridge, MA, 1985. · Zbl 0606.68032
[16] H. S. Wilf, 54 computer-generated proofs of binomial coefficient identities (to appear).
[17] Herbert S. Wilf and Doron Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3 (1990), no. 1, 147 – 158. · Zbl 0695.05004
[18] Jet Wimp and Doron Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985), no. 1, 162 – 176. · Zbl 0579.05007
[19] Doron Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990), no. 3, 321 – 368. · Zbl 0738.33001
[20] Doron Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991), no. 3, 195 – 204. · Zbl 0738.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.