Greither, Cornelius Relative integral normal bases in \({\mathbb{Q}}(\zeta_ p)\). (English) Zbl 0718.11053 J. Number Theory 35, No. 2, 180-193 (1990). Let p be a prime congruent to 3 mod 4. Let K be the quadratic subfield of the cyclotomic field \({\mathbb{Q}}(\zeta)\), \(\zeta\) a primitive p-th root of unity, let \(\Gamma =Gal({\mathbb{Q}}(\zeta)/K)\) and let \(R={\mathbb{Z}}[\zeta]\). It is known [J. Brinkhuis, J. Reine Angew. Math. 375/376, 157-166 (1987; Zbl 0609.12009)]) that R is projective, but not free as an \({\mathcal O}_ K\Gamma\)-module. One can ask if \({\mathcal M}R\cong {\mathcal M}\), where \({\mathcal M}\) is the maximal order of \({\mathcal O}_ K\Gamma\). J. Cougnard [Publ. Math. Fac. Sci. Besançon, Théor. Nombres, Années 1981-1982 et 1982-1983 (1983; Zbl 0539.12004) and Sémin. Théor. Nombres, Univ. Bordeaux 1983-1984, Exp. No.30 (1984; Zbl 0544.12006)] has shown this to be so for \(p=7\) and \(p=11\). The author extends Cougnard’s results to show that \({\mathcal M}R={\mathcal M}\) for all \(p\equiv 3 mod 4\) where \(\ell =(p-1)/2\) is prime, the class number of \({\mathbb{Q}}(\zeta)\) is odd, and \(p<1500\); also \(p=19\), 163, 31, 43, 67, 71, 103 and 139. (This leaves only \(p=59\) and 79 open, among primes \(<100.)\) Also, \({\mathcal M}R\cong {\mathcal M}\) for primes p such that \(\ell =(p-1)/2\) is prime, \(r=(\ell - 1)/2\) is prime, and 2 is a primitive root mod r. This includes \(p=23\), 47, 719 and eleven other primes \(<15000\). Reviewer: L.N.Childs (Albany) Cited in 2 ReviewsCited in 6 Documents MSC: 11R18 Cyclotomic extensions 11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers Keywords:free module; integral normal bases; quadratic subfield; cyclotomic field; maximal order Citations:Zbl 0609.12009; Zbl 0539.12004; Zbl 0544.12006 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Brinkhuis, J., Normal integral bases and complex conjugation, J. Reine Angew. Math., 375, 157-166 (1987) · Zbl 0609.12009 [2] Cassou-Nogues, Ph.; Taylor, M., Elliptic functions and rings of integers, (Progress in Mathematics, Vol. 66 (1986), Birkhäuser: Birkhäuser Basel) · Zbl 0608.12013 [3] Cornell, G.; Rosen, M. I., The \(l\)-rank of the real classgroup of cyclotomic fields, Composito Math., 53, 133-141 (1984) · Zbl 0551.12006 [4] Cougnard, J., Une remarque sur l’anneau des entiers du corps des racines septièmes de l’unité, (Séminaire de théorie de nombres. Séminaire de théorie de nombres, Besançon (1982 1983)) · Zbl 0539.12004 [5] Cougnard, J., La non existence de base normale relative dans le corps des racines 11-ièmes de l’unité, (Séminaire de théorie des nombres de Bordeaux (1983 1984)) · Zbl 0544.12006 [6] Cougnard, J., Génération de l’anneau des entiers des corps de classes de \(Q(i)\) de rayon impair, et points de division de \(y = x^3\) − \(x\), J. Number Theory, 30, 10-155 (1988) · Zbl 0661.12003 [7] Davis, D., Computing the number of totally positive circular units which are squares, J. Number Theory, 10, 1-9 (1978) · Zbl 0369.12002 [8] Fröhlich, A., Galois module structure of algebraic integers, (Ergebnisse Math., Vol. 1 (1983), Springer: Springer New York/Berlin) · Zbl 0501.12012 [9] Garbanati, D., Unit signatures, and even class numbers, and relative class numbers, J. Reine Angew. Math., 274, 376-384 (1975) · Zbl 0312.12015 [10] Hasse, H., Über die Klassenzahl abelscher Zahlkörper (1952), Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0063.01966 [11] Hurrelbrink, J.; Kolster, M., On the 2-primary part of the Birch-Tate conjecture for cyclotomic fields, (“Contemporary Math.,” Proc. AMS Boulder Conf.. “Contemporary Math.,” Proc. AMS Boulder Conf., Amer. Math. Soc., Providence, RI (1983)) · Zbl 0601.12016 [12] Lang, S., Cyclotomic fields, II, (Graduate Texts in Mathematics (1980), Springer: Springer New York/Berlin) · Zbl 0435.12001 [13] van der Linden, F., Class number computations of real abelian number fields, Math. Comp., 39, 693-707 (1982) · Zbl 0505.12010 [14] Pohst, M., Tables of Quartic Fields with Discriminant < \(10^6 (1988)\), Düsseldorf [15] Washington, L., (Introduction to Cyclotomic Fields (1982), Springer: Springer New York/Berlin) · Zbl 0484.12001 [16] D. R. Estes\(q\)Rocky Mountain J. Math.; D. R. Estes\(q\)Rocky Mountain J. Math. · Zbl 0703.11052 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.