×

zbMATH — the first resource for mathematics

Local cyclic homology. (English) Zbl 0718.18008
This paper deals with cyclic homology in the spirit of the algebraic de Rham cohomology of a formal neighborhood. Local (cyclic) homology of filtered associative algebras is defined and discussed. In the commutative case, it is shown that the canonical homomorphism of filtered algebraic \(S^ 1\)-chain complexes C*(A)\(\to \lim_{\leftarrow k}C*(A/I_ k)\) induces an isomorphism \(\hat C*(A)=\lim_{\leftarrow p}C*(A)/F_ pC*(A)\to \lim_{\leftarrow k}C*(A/I_ k)\). This result enables the author to obtain a sort of generalization of a result of Feigin and Tsygan on periodic homology. It is also shown that for a filtered k-algebra A with filtration HC-cofinite, the F-filtration on \({}_ B\hat C*(A)\) is strongly convergent.

MSC:
18G60 Other (co)homology theories (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boardman, J. M.: Conditionally convergent spectral sequences, preprint, 1981. · Zbl 0947.55020
[2] Burghelea, D.: Cyclic homology and the K-theory of spaces I. Proc. Summer Inst. on Algebraic K-theory, Boulder, Colorado, 1983, Contemp. Math. vol. 55, part I. (1986), pp. 89-115.
[3] Cartan, H. and Eilenberg, S.: Homological Algebra, Princeton Univ. Press, Princeton (1956).
[4] Connes, A. and Cuntz, J.: Quasi homomorphismes, cohomologie cyclique et positivité, Comm. Math. Phys. 114 (1988), 515-526. · Zbl 0664.46067 · doi:10.1007/BF01242141
[5] Cuntz, J.: A new look at KK-theoty, K-Theory 1 (1988), 31-51. · Zbl 0636.55001 · doi:10.1007/BF00533986
[6] Feigin, B. L. and Tsygan, B. L.: Additive K-theory, in K-Theory, Arithmetic and Geometry, Lecture Notes in Math. 1289, Springer-Verlag, New York, Heidelberg, Berlin (1987), pp. 97-209. · Zbl 0635.18008
[7] Goodwillie, T. G.: Cyclic homology, derivations and the free loop space, Topology 24(2) (1985), 187-215. · Zbl 0569.16021 · doi:10.1016/0040-9383(85)90055-2
[8] Hartshorne, R.: On the De Rham cohomology of algebraic varieties, Publ. Math. IHES 45 (1976), 5-99. · Zbl 0326.14004
[9] Hood, C. E. and Jones, J. D. S.: Some algebraic properties of cyclic homology groups, K-Theory 1 (1987), 361-384. · Zbl 0636.18005 · doi:10.1007/BF00539623
[10] Kassel, C.: Cyclic homology, comodules and mixed complexes, J. Algebra 107(1), (1987), 195-216. · Zbl 0617.16015 · doi:10.1016/0021-8693(87)90086-X
[11] Loday, J. L. and Quillen, D.: Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 565-591. · Zbl 0565.17006 · doi:10.1007/BF02566367
[12] MacLane, S.: Homology, Springer Verlag, Berlin, Göttingen, Heidelberg (1963).
[13] Northcott, D. G.: Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, Cambridge (1968). · Zbl 0159.33001
[14] Seibt, P.: Cyclic Homology of Algebras, World Scientific, Singapore, N. Jersey, Hong Kong (1987). · Zbl 0743.16009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.