×

On the upper critical dimension of lattice trees and lattice animals. (English) Zbl 0718.60117

Summary: We give a rigorous proof of mean-field critical behavior for the susceptibility \((\gamma =1/2)\) and the correlation length \((\nu =1/4)\) for models of lattice trees and lattice animals in two cases: (i) for the usual model with trees or animals constructed from nearest-neighbor bonds, in sufficiently high dimensions, and (ii) for a class of “spread- out” or long-range models in which trees and animals are constructed from bonds of various lengths, above eight dimensions. This provides further evidence that for these models the upper critical dimension is equal to eight. The proof involves obtaining an infrared bound and showing that a certain “square diagram” is finite at the critical point, and uses an expansion related to the lace expansion for the self- avoiding walk.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. C. Brydges and T. Spencer, Self-avoiding walk in 5 or more dimensions,Commun. Math. Phys. 97:125-148 (1985). · Zbl 0575.60099 · doi:10.1007/BF01206182
[2] G. Slade, The diffusion of self-avoiding random walk in high dimensions,Commun. Math. Phys. 110:661-683 (1987). · Zbl 0628.60073 · doi:10.1007/BF01205555
[3] G. Slade, The scaling limit of self-avoiding random walk in high dimensions,Ann. Prob. 17:91-107 (1989). · Zbl 0664.60069 · doi:10.1214/aop/1176991496
[4] G. Slade, Convergence of self-avoiding random walk to Brownian motion in high dimensions,J. Phys. A 21:L417-L420 (1988). · Zbl 0653.60061 · doi:10.1088/0305-4470/21/7/010
[5] G. Lawler, The infinite self-avoiding walk in high dimensions,Ann. Prob. 17:1367-1376 (1989). · Zbl 0691.60062 · doi:10.1214/aop/1176991159
[6] T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions,Commun. Math. Phys. 128:333-391 (1990); The triangle condition for percolation,Bull. AMS (New Series) 21:269-273 (1989). · Zbl 0698.60100 · doi:10.1007/BF02108785
[7] M. Aizenman and C. M. Newman, Tree graph inequalities and critical behaviour in percolation models,J. Stat. Phys. 36:107-143 (1984). · Zbl 0586.60096 · doi:10.1007/BF01015729
[8] D. J. Barsky and M. Aizenman, Percolation critical exponents under the triangle condition, Preprint (1988). · Zbl 0747.60093
[9] B. G. Nguyen, Gap exponents for percolation processes with triangle condition,J. Stat. Phys. 49:235-243 (1987). · Zbl 0962.82521 · doi:10.1007/BF01009960
[10] T. Hara, Mean field critical behaviour for correlation length for percolation in high dimensions,Prob. Theory Rel. Fields, in press.
[11] J. Fr?hlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions, and continuous symmetry breaking,Commun. Math. Phys. 50:79-95 (1976). · doi:10.1007/BF01608557
[12] M. Aizenman, Geometric analysis of? 4 fields and Ising models, Parts I and II,Commun. Math. Phys. 86:1-48 (1982). · Zbl 0533.58034 · doi:10.1007/BF01205659
[13] J. Fr?hlich, On the triviality of? d 4 theories and the approach to the critical point ind?4 dimensions,Nucl. Phys. B 200[FS4]:281-296 (1982). · doi:10.1016/0550-3213(82)90088-8
[14] J. W. Essam, Percolation theory,Rep. Prog. Phys. 43:833-912 (1980). · doi:10.1088/0034-4885/43/7/001
[15] T. C. Lubensky and J. Isaacson, Statistics of lattice animals and dilute branched polymers,Phys. Rev. A 20:2130-2146 (1979). · doi:10.1103/PhysRevA.20.2130
[16] A. Bovier, J. Fr?hlich, and U. Glaus, Branched polymers and dimensional reduction, inCritical Phenomena, Random Systems, Gauge Theories, K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1984).
[17] H. Tasaki, Stochastic geometric methods in statistical physics and field theories, Ph.D. thesis, University of Tokyo (1986). · Zbl 0593.53037
[18] H. Tasaki and T. Hara, Critical behaviour in a system of branched polymers,Prog. Theor. Phys. Suppl. 92:14-25 (1987). · doi:10.1143/PTPS.92.14
[19] J. T. Chayes and L. Chayes, On the upper critical dimension of Bernoulli percolation,Commun. Math. Phys. 113:27-48 (1987). · Zbl 0627.60100 · doi:10.1007/BF01221395
[20] H. Tasaki, Hyperscaling inequalities for percolation,Commun. Math. Phys. 113:49-65 (1987). · Zbl 0627.60101 · doi:10.1007/BF01221396
[21] H. Tasaki, Geometric critical exponent inequalities for general random cluster models,J Stat. Phys. 49:841-847 (1987). · doi:10.1007/BF01009360
[22] D. J. Klein, Rigorous results for branched polymer models with excluded volume,J. Chem. Phys. 75:5186-5189 (1981). · doi:10.1063/1.441869
[23] D. A. Klarner, Cell growth problems,Can. J. Math. 19:851-863 (1967). · Zbl 0178.00904 · doi:10.4153/CJM-1967-080-4
[24] N. Madras, C. E. Soteros, and S. G. Whittington, Statistics of lattice animals,J. Phys. A 21:4617-4635 (1988). · Zbl 0687.05016 · doi:10.1088/0305-4470/21/24/016
[25] G. Parisi and N. Sourlas, Critical behaviour of branched polymers and the Lee-Yang edge singularity,Phys. Rev. Lett. 46:871-874 (1981). · Zbl 0969.82030 · doi:10.1103/PhysRevLett.46.871
[26] M. V. Menshikov, S. A. Molchanov, and A. F. Sidorenko, Percolation theory and some applications,Itogi Nauki Tekhniki (Ser. Prob. Theory, Math. Stat., Theoret. Cybernet.) 24:53-110 (1986) [English transl.,J. Sov. Math. 42:1766-1810 (1988)].
[27] J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability,J. Appl. Prob. 22:556-569 (1985). · Zbl 0571.60019 · doi:10.2307/3213860
[28] C. Berge,Graphs and Hypergraphs (North-Holland, Amsterdam, 1973). · Zbl 0254.05101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.