×

On dot-depth two. (English) Zbl 0718.68046

If A is a finite alphabet then the Straubing hierarchy is: \(A^*V_ o=\{0,A^*\}\) and \(A^*V_{k+1}=\{L\subseteq A^ A{}^*| L\) is a boolean combination of languages of the form \(L_ oa_ 1L_ 1a_ 2...a_ nL_ n(n\geq o)\) with \(L_ o,...\), \(L_ n\in A^*V_ k\), \(a_ 1,...,a_ n\in A\}.\)
A language \(L\subseteq A^*\) is star-free if and only if \(L\in A^*V_ k\) for some \(k\geq 0\). The smallest k such that \(L\in A^*V_ k\) is the dot-depth of L.
The paper investigates the open problem whether it is decidable if a given language has the dot-depth k (which is equivalent to the problem of effectively characterizing the monoids \(M=A^*/\sim\) where \(\sim \supseteq \sim \bar m\), \(\sim \bar m\) defined in the paper, \(\bar m=(m_ 1,...,m_ k)\), \(m_ i\in {\mathbb{N}}\), \(1\leq i\leq k)\). The main result of this paper is that for positive integers \(m_ 1\), \(m_ 2\), \(m_ 3\), the monoid \(A^*/\sim (m_ 1,m_ 2,m_ 3)\) is of dot-depth exactly 2 if and only if \(m_ 2=1\).
Reviewer: G.Grigoras (Iaşi)

MSC:

68Q45 Formal languages and automata
03D05 Automata and formal grammars in connection with logical questions
03D55 Hierarchies of computability and definability

References:

[1] 1. J. A. BRZOZOWSKI and R. KNAST, The Dot-Depth Hierarchy of Star-Free Languages if Infinite, J. Comp. Sys. Sci., 1978, 16, pp. 37-55. Zbl0368.68074 MR471451 · Zbl 0368.68074 · doi:10.1016/0022-0000(78)90049-1
[2] 2. F. BLANCHET-SADRI, Some Logical Characterizations of the Dot-Depth Hierarchy and Applications, Technical Report No. 88-03 of the Department of Mathematics and Statistics of McGill University, July 1988, pp. 1-44. MR2685431
[3] 3. F. BLANCHET-SADRI, Games, Equations and the Dot-Depth Hierarchy, (preprint 1988 ), Computers and Mathematics with applications (à paraître). Zbl0682.03015 MR1008808 · Zbl 0682.03015 · doi:10.1016/0898-1221(89)90179-X
[4] 4. R. S. COHEN and J. A. BRZOZOWSKI, Dot-Depth of Star-Free Events, J. Comp. Sys. Sci., 1971, 5, pp. 1-16. Zbl0217.29602 MR309676 · Zbl 0217.29602 · doi:10.1016/S0022-0000(71)80003-X
[5] 5. A. EHRENFEUCHT, An Application of Games to the Completeness Problem for Formalized Theories, Fund. Math., 1961, 49, pp. 129-141. Zbl0096.24303 MR126370 · Zbl 0096.24303
[6] 6. S. EILENBERG, Automata, Languages and Machines, B, Academic Press, New York, 1976. Zbl0359.94067 MR530383 · Zbl 0359.94067
[7] 7. H. B. ENDERTON, A Mathematical Introduction to Logic, Academic Press, New York, 1972. Zbl0298.02002 MR337470 · Zbl 0298.02002
[8] 8. R. FRAISSÉ, Cours de logique mathématique, tome 2, Gauthier-Vîllars, Paris, 1972. Zbl0247.02003 MR446871 · Zbl 0247.02003
[9] 9. G. LALLEMENT, Semigroups and Combinatorial Applications, Wiley, New York, 1979. Zbl0421.20025 MR530552 · Zbl 0421.20025
[10] 10. R. MCNAUGHTON and S. PAPERT, Counter-Free Automata, M.I.T. Press, Cambridge, Mass., 1971. Zbl0232.94024 MR371538 · Zbl 0232.94024
[11] 11. D. PERRIN and J. E. PIN, First-Order Logic and Star-Free Sets, J. Comp. Sys. Sci., 1986, 32, pp. 393-406. Zbl0618.03015 MR858236 · Zbl 0618.03015 · doi:10.1016/0022-0000(86)90037-1
[12] 12. J. E. PIN, Variétés de langages formels, Masson, Paris, 1984. Zbl0636.68093 MR752695 · Zbl 0636.68093
[13] 13. J. E. PIN, Hiérarchies de contaténation, R.A.I.R.O. Informatique Théorique, 1984, 18, pp. 23-46. Zbl0559.68062 MR750449 · Zbl 0559.68062
[14] 14. J. G. ROSENSTEIN, Linear Orderings, Academic Press, New York, 1982. Zbl0488.04002 MR662564 · Zbl 0488.04002
[15] 15. M. P. SCHÜTZENBERGER, On Finite Monoids having only Trivial Subgroups, Information and Control, 1965, 8, pp. 190-194. Zbl0131.02001 MR176883 · Zbl 0131.02001 · doi:10.1016/S0019-9958(65)90108-7
[16] 16. I. SIMON, Piecewise Testable Events, Proc. 2nd GI Conference, Lectures Notes in Comput Sci., Springer Verlag, Berlin, 1975, 33, pp. 214-222. Zbl0316.68034 MR427498 · Zbl 0316.68034
[17] 17. H. STRAUBING, A Generalization of the Schützenberger Product of Finite Monoids, Theoretical Comput Sci., 1981, 13, pp. 137-150. Zbl0456.20048 MR594057 · Zbl 0456.20048 · doi:10.1016/0304-3975(81)90036-0
[18] 18. H. STRAUBING, Finite Semigroup Varieties of the Form V*D, J. of Pure and Applied Algebra, 1985, 36, pp. 53-94. Zbl0561.20042 MR782639 · Zbl 0561.20042 · doi:10.1016/0022-4049(85)90062-3
[19] 19. H. STRAUBING, Semigroups and Languages of Dot-Depth Two, Proc. 13th ICALP, Lecture Notes in Comput. Sci., Springer Verlag, New York, 1986, 226, pp. 416- 423. Zbl0596.68056 MR864704 · Zbl 0596.68056
[20] 20. W. THOMAS, Classifying Regular Events in Symbolic Logic, J. Comp. Sys. Sci., 1982, 25, pp. 360-376. Zbl0503.68055 MR684265 · Zbl 0503.68055 · doi:10.1016/0022-0000(82)90016-2
[21] 21. W. THOMAS, An Application of the Ehrenfeucht-Fraissé Game in Formal Language Theory, Bull. Soc. Math. de France, 2e série, Mémoire, 1984, No. 16, pp. 11-21. Zbl0558.68064 MR792490 · Zbl 0558.68064
[22] 22. B. TILSON, Categories as Algebra, J. of Pure and Applied Algebra, 1987, 48, pp. 83-198. Zbl0627.20031 MR915990 · Zbl 0627.20031 · doi:10.1016/0022-4049(87)90108-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.