×

zbMATH — the first resource for mathematics

Greedy approximate projection for magnetic resonance fingerprinting with partial volumes. (English) Zbl 1453.92157
MSC:
92C55 Biomedical imaging and signal processing
Software:
PDCO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jara H 2013 Theory of Quantitative Magnetic Resonance Imaging (Singapore: World Scientific)
[2] Ma D, Gulani V, Seibelich N, Liu K, Duerk J L and Griswold M A 2013 Magnetic resonance fingerprinting Nature465 187-92
[3] Donoho D L 2006 Compressed sensing IEEE Trans. Inform. Theory52 1289-306 · Zbl 1288.94016
[4] Doneva M, Brnert P, Eggers H, Stehning C, Sngas J and Mertins A 2010 Compressed sensing reconstruction for magnetic resonance parameter mapping Magn. Reson. Med.64 1114-20
[5] Davies M, Puy G, Vandergheynst P and Wiaux Y 2014 A compressed sensing framework for magnetic resonance fingerprinting SIAM J. Imaging Sci.7 2623 · Zbl 1309.65012
[6] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci.2 183-202 · Zbl 1175.94009
[7] Tseng P 2000 A modified forward-backward splitting method for maximal monotone mappings SIAM J. Control Optim.38 431-46 · Zbl 0997.90062
[8] Pierre E Y, Ma D, Chen Y, Badve C and Griswold M A 2016 Multiscale reconstruction for mr fingerprinting Magn. Reson. Med.75 2481-92
[9] Zhao B, Setsompop K, Ye H, Cauley S F and Wald L L 2016 Maximum likelihood reconstruction for magnetic resonance fingerprinting IEEE Trans. Med. Imaging35 1812-23
[10] Zhao B, Setsompop K, Adalsteinsson E, Gagoski B, Ye H, Ma D, Jiang Y, Ellen Grant P, Griswold M A and Wald L L 2017 Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling Magn. Reson. Med.79 933-42
[11] Doneva M, Amthor T, Koken P, Sommer K and Brnert P 2017 Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data Magn. Reson. Imaging41 41-52
[12] Mazor G, Weizman L, Tal A and Eldar Y C 2018 Low-rank magnetic resonance fingerprinting Med. Phys.45 4066-84
[13] McGivney D F, Pierre E, Ma D, Jiang Y, Saybasili H, Gulani V and Griswold M A 2014 Svd compression for magnetic resonance fingerprinting in the time domain IEEE Trans. Med. Imaging33 2311-22
[14] Tohka J 2014 Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: a review World J. Radiol.6 855-64
[15] Deshmane A, McGivney D F, Ma D, Jiang Y, Badve C, Gulani V, Seiberlich N and Griswold M A 2019 Partial volume mapping using magnetic resonance fingerprinting NMR Biomed.32 e4082
[16] McGivney D, Deshmane A, Jiang Y, Ma D, Badve C, Sloan A, Gulani V and Griswold M 2018 Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting Magn. Reson. Med.80 159-70
[17] Tang S, Fernandez-Granda C, Lannuzel S, Bernstein B, Lattanzi R, Cloos M, Knoll F and Assländer J 2018 Multicompartment magnetic resonance fingerprinting Inverse Problems34 094005 · Zbl 1397.78054
[18] Bertsekas D P 1999 Nonlinear Programming (Belmont, MA: Athena Scientific) · Zbl 1015.90077
[19] Tseng P 2001 Convergence of a block coordinate descent method for nondifferentiable minimization J. Optim. Theory Appl.109 475-94 · Zbl 1006.65062
[20] Bolte J, Sabach S and Teboulle M 2014 Proximal alternating linearized minimization for nonconvex and nonsmooth problems Math. Program.146 459-94 · Zbl 1297.90125
[21] Frankel P, Garrigos G and Peypouquet J 2015 Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates J. Optim. Theory Appl.165 874-900 · Zbl 1316.49039
[22] Chouzenoux E, Pesquet J-C and Repetti A 2016 A block coordinate variable metric forward-backward algorithm J. Global Optim.66 457-85 · Zbl 1351.90128
[23] Bauschke H and Combettes P L 2017 Convex Analysis and Monotone Operator Theory in Hilbert Spaces (New York: Springer) · Zbl 1359.26003
[24] Rockafellar R T and Wets R J B 2009 Variational Analysis vol 317 (New York: Springer)
[25] Weigel M 2015 Extended phase graphs: dephasing, RF pulses, and echoes-pure and simple J. Magn. Reson. Imaging41 266-95
[26] Candes E J, Romberg J and Tao T 2006 Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inform. Theory52 489-509 · Zbl 1231.94017
[27] Donoho D L and Huo X 2001 Uncertainty principles and ideal atomic decomposition IEEE Trans. Inf. Theory47 2845-62 · Zbl 1019.94503
[28] Donoho D L and Elad M 2003 Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization Proc. Natl Acad. Sci.100 2197-202 · Zbl 1064.94011
[29] Davenport M A, Needell D and Wakin M B 2013 Signal space cosamp for sparse recovery with redundant dictionaries IEEE Trans. Inf. Theory59 6820-9 · Zbl 1364.94119
[30] Giryes R and Elad M 2013 Iterative hard thresholding with near optimal projection for signal recovery 10th Int. Conf. on Sampling Theory and Applications
[31] Chen S, Donoho D and Saunders M A 1998 Atomic decomposition by basis pursuit SIAM J. Sci. Comput.20 33-61 · Zbl 0919.94002
[32] Candes E J, Eldar Y C, Needell D and Randall P 2011 Compressed sensing with coherent and redundant dictionaries Appl. Comput. Harmon. Anal.31 59-73 · Zbl 1215.94026
[33] Blumensath T 2011 Sampling and reconstructing signals from a union of linear subspaces IEEE Trans. Inf. Theory57 4660-71 · Zbl 1365.94173
[34] Blumensath T and Davies M E 2010 Normalized iterative hard thresholding: guaranteed stability and performance IEEE J. Sel. Top. Signal Process.4 298-309
[35] Golbabaee M, Chen D, Gómez P A, Menzel M I and Davies M E 2018 A deep learning approach for magnetic resonance fingerprinting CoRR (arXiv:abs/1809.01749)
[36] Cohen O, Zhu B and Rosen M S 2018 MR fingerprinting deep reconstruction network (drone) Magn. Reson. Med.80 885-94
[37] Hoppe E, Körzdörfer G, Würfl T, Wetzl J, Lugauer F, Pfeuffer J and Maier A K 2017 Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series GMDS pp 202-6
[38] Virtue P, Stella X Y and Lustig M 2017 Better than real: complex-valued neural nets for mri fingerprinting IEEE Int. Conf. on Image Processing pp 3953-7
[39] Chen G H G and Rockafellar R T 1997 Convergence rates in forward-backward splitting SIAM J. Optim.7 421-44 · Zbl 0876.49009
[40] Combettes P L and Wajs V R 2005 Signal recovery by proximal forward-backward splitting Multiscale Model. Simul.4 1168-200 · Zbl 1179.94031
[41] Lawson C L and Hanson R J 1995 Solving Least Squares Problems vol 15 (Philadelphia, PA: SIAM)
[42] Canny J 1986 A computational approach to edge detection IEEE Trans. Pattern Anal. Mach. Int.PAMI-8 679-98
[43] Lloyd S 1982 Least squares quantization in PCM IEEE Trans. Inf. Theory28 129-37 · Zbl 0504.94015
[44] Rieger B, Zimmer F, Zapp J, Weingärtner S and Schad L R 2017 Magnetic resonance fingerprinting using echo-planar imaging: joint quantification of T1 and T2* relaxation times Magn. Reson. Med.78 1724-33
[45] Rieger B, Akçakaya M, Pariente J C, Llufriu S, Martinez-Heras E, Weingärtner S and Schad L R 2018 Time efficient whole-brain coverage with mr fingerprinting using slice-interleaved echo-planar-imaging Sci. Rep.8 6667
[46] Collins D L, Zijdenbos A P, Kollokian V, Sled J G, Kabani N J, Holmes C J and Evans A C 1998 Design and construction of a realistic digital brain phantom IEEE Trans. Med. Imaging17 463-8
[47] Benjamin A, Gómez P, Golbabaee M, Mahbub Z, Sprenger T, Menzel M, Davies M and Marshall I 2018 Balanced multi-shot EPI for accelerated cartesian MR fingerprinting: an alternative to spiral MR fingerprinting Proc. Int. Society for Magnetic Resonance in Medicine p 4265
[48] Jiang Y, Ma D, Seiberlich N, Gulani V and Griswold M A 2015 MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout Magn. Reson. Med.74 1621-31
[49] Cline C C, Chen X, Mailhe B, Wang Q, Pfeuffer J, Nittka M, Griswold M A, Speier P and Nadar M S 2017 AIR-MRF: accelerated iterative reconstruction for magnetic resonance fingerprinting Magn. Reson. Imaging41 29-40
[50] Gómez P A, Bounincontri G, Molina-Romero M, Sperl J I, Menzel M I and Menze B H 2017 Accelerated parameter mapping with compressed sensing: an alternative to MR fingerprinting Proc. Int. Society for Magnetic Resonance in Medicine
[51] Bojorquez J Z, Bricq S, Acquitter C, Brunotte F, Walker P M and Lalande A 2017 What are normal relaxation times of tissues at 3T? Magn. Reson. Imaging35 69-80
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.