×

zbMATH — the first resource for mathematics

The deal.II library, Version 9.1. (English) Zbl 1435.65010
Summary: This paper provides an overview of the new features of the finite element library deal.II, Version 9.1.

MSC:
65-04 Software, source code, etc. for problems pertaining to numerical analysis
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI HAL
References:
[1] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M.Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, Version 9.0, J. Numer. Math. 26 (2018), No. 4, 173-184. · Zbl 1410.65363
[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. ĽfExcellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), No. 1, 15-41. · Zbl 0992.65018
[3] P. R. Amestoy, I. S. Duff, and J.-Y. ĽfExcellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Eng. 184 (2000), 501-520. · Zbl 0956.65017
[4] P. R. Amestoy, A. Guermouche, J.-Y. ĽfExcellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing32 (2006), No. 2, 136-156.
[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
[6] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M.Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, Version 8.5, J. Numer. Math. 25 (2017), No. 3, 137-146. · Zbl 1375.65148
[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D.May, L. Curfman McInnes, R. Mills, T.Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, Report No. ANL-95/11 - Revision 3.9, 2018.
[8] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D.May, L. Curfman McInnes, R. Mills, T.Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web Page, http://www.mcs.anl.gov/petsc, 2018.
[9] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Softw. 38 (2011), 14/1-14/28. · Zbl 1365.65247
[10] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Softw. 33 (2007), No. 4, 24/1-24/27. · Zbl 1365.65248
[11] W. Bangerth and O. Kayser-Herold, Data Structures and Requirements for hp Finite Element Software, ACM Trans. Math. Softw. 36 (2009), No. 1, 4/1-4/31. · Zbl 1364.65237
[12] C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem, Math. Comp. 44 (1985), No. 169, 71-79. · Zbl 0563.65075
[13] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.Hammarling, G. Henry, A. Petitet, K. Stanley, D.Walker, and R. C.Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.
[14] J. L. Blanco and P. K. Rai, Nanoflann: a C++ Header-Only Fork of FLANN, a Library for Nearest Neighbor (NN) with KD-Trees, https://github.com/jlblancoc/nanoflann, 2014.
[15] C. Burstedde, Parallel tree algorithms for AMR and non-standard data access, arXiv e-prints (2018), arXiv:1803.08432.
[16] C. Burstedde, L. C.Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (2011), No. 3, 1103-1133. · Zbl 1230.65106
[17] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler, A Flexible, Parallel, Adaptive Geometric Multigrid Method for FEM, arXiv:1904.03317, Report, 2019.
[18] CuSOLVER Library, https://docs.nvidia.com/cuda/cusolver/index.html.
[19] CuSPARSE Library, https://docs.nvidia.com/cuda/cusparse/index.html.
[20] T. A. Davis, Algorithm 832: UMFPACK V4.3.an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (2004), 196-199. · Zbl 1072.65037
[21] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann, Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics, Adv. Modeling Simul. Eng. Sci. 4 (2017), No. 1, 7.
[22] A. DeSimone, L. Heltai, and C.Manigrasso, Tools for the Solution of PDEs Defined on Curved Manifolds with Deal.II, SISSA, Report No. 42/2009/M, 2009.
[23] M. A. Heroux et al., Trilinos Web Page, 2018, http://trilinos.org.
[24] MGalassi, J Davies, J Theiler, B Gough, G Jungman, P Alken, MBooth, F Rossi, and R Ulerich, GNU Scientific Library Reference Manual (Edition 2.3), 2016.
[25] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Eng. 79 (2009), No. 11, 1309-1331. · Zbl 1176.74181
[26] Ginkgo: High-Performance Linear Algebra Library for Manycore Systems, https://github.com/ginkgo-project/ginkgo.
[27] N. Giuliani, A.Mola, and L. Heltai, π-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods, Advances in Engineering Software121 (2018), No.March, 39-58.
[28] A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++, ACM Trans. Math. Software (TOMS)22 (1996), No. 2, 131-167. · Zbl 0884.65015
[29] L. Heltai and A.Mola, Towards the Integration of CAD and FEM Using Open Source Libraries: a Collection of Deal.II Manifold Wrappers for the OpenCASCADE Library, SISSA, Report, 2015.
[30] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems, ACM Trans. Math. Software31 (2005), No. 3, 351-362. · Zbl 1136.65315
[31] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.Willenbring, A.Williams, and K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Softw. 31 (2005), 397-423. · Zbl 1136.65354
[32] A. C. Hindmarsh, P. N. Brown, K. Ei. Grant, S. Li. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Software (TOMS)31 (2005), No. 3, 363-396. · Zbl 1136.65329
[33] B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H1- and Hcurl-conforming high order finite element methods, SIAM J. Sci. Comput. 33 (2011), No. 4, 2095-2114. · Zbl 1230.65133
[34] G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Struct. 82 (2004), No. 28, 2437-2445.
[35] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), No. 1, 359-392. · Zbl 0915.68129
[36] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids63 (2012), 135-147. · Zbl 1365.76121
[37] M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Soft. 45 (2019), No. 3, 29/1-29/40.
[38] M. Kronbichler and K. Ljungkvist, Multigrid for Matrix-Free High-Order Finite Element Computations on Graphics Processors, ACM Trans. Parallel Comput. 6 (2019), No. 1, 2/1-2/32.
[39] M. Kronbichler and W. A.Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput. 40 (2018), No. 5, A3423-A3448. · Zbl 1402.65163
[40] R. M. Kynch and P. D. Ledger, Resolving the sign conflict problem for hp.hexahedral Nedelec elements with application to eddy current problems, Computers & Structures181 (2017), 41-54.
[41] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998. · Zbl 0901.65021
[42] List of Changes for 9.1, https://www.dealii.org/developer/doxygen/deal.II/changes_between_9_0_1_and_9_1_0.html.
[43] K. Ljungkvist, Matrix-free Finite-element Computations on Graphics Processors with Adaptively Refined Unstructured Meshes, In: Proceedings of the 25th High Performance Computing Symposium, HPC’17, pp. 1:1-1:12, Society for Computer Simulation International, San Diego, CA, USA, 2017.
[44] M.Maier, M. Bardelloni, and L. Heltai, LinearOperator – a generic, high-level expression syntax for linear algebra, Comp. & Math. Appl. 72 (2016), No. 1, 1-24.
[45] M.Maier, M. Bardelloni, and L. Heltai, LinearOperator Benchmarks, Version 1.0.0, March 2016.
[46] MUMPS: a MUltifrontal Massively Parallel Sparse Direct Solver, http://graal.ens-lyon.fr/MUMPS/.
[47] Muparser: Fast Math Parser Library, http://muparser.beltoforion.de/.
[48] OpenCASCADE: Open CASCADE Technology, 3D Modeling & Numerical Simulation, http://www.opencascade.org/.
[49] J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.
[50] R. Rew and G. Davis, NetCDF: an interface for scientific data access, Computer Graphics and Applications, IEEE10 (1990), No. 4, 76-82.
[51] D. Ridzal and D. P. Kouri, Rapid Optimization Library, Sandia National Laboratories (SNL-NM), Albuquerque, NM, USA, Report, 2014.
[52] A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai, deal2lkit: A toolkit library for high performance programming in deal.II, SoftwareX7 (2018), 318-327.
[53] T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch, Open asset import library (assimp), Computer Software, URL: https://github.com/assimp/assimp (2012).
[54] SymEngine: Fast Symbolic Manipulation Library, Written in C++, https://github.com/symengine/symengine, http://sympy.org/.
[55] The HDF Group, Hierarchical Data Format, Version 5, 1997-2018, http://www.hdfgroup.org/HDF5/.
[56] B. Turcksin, M. Kronbichler, and W. Bangerth, WorkStream – a design pattern for multicore-enabled finite element computations, ACM Trans. Math. Software43 (2016), No. 1, 2/1-2/29. · Zbl 1396.65145
[57] A.Walther and A. Griewank, Getting started with ADOL-C, In: Combinatorial Scientific Computing, Chapman-Hall CRC Computational Science, pp. 181-202, U. Naumann and O. Schenk, 2012.
[58] S. Zaglmayr, High Order Finite Element Methods for Electromagnetic Field Computation, Ph.D. thesis, Johannes Kepler University, Linz, Austria, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.