zbMATH — the first resource for mathematics

Deep learning the holographic black hole with charge. (English) Zbl 1432.83010
83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C57 Black holes
83E05 Geometrodynamics and the holographic principle
Full Text: DOI
[1] Gubser, S. S., Klebanov, I. R. and Polyakov, A. M., Phys. Lett. B428 (1998) 105, arXiv:hep-th/9802109.
[2] Witten, E., Adv. Theor. Math. Phys.2 (1998) 253, arXiv:hep-th/9802150.
[3] J. M. Maldacena, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231], arXiv:hep-th/9711200.
[4] G. ’t Hooft, Dimensional Reduction in Quantum Gravity, arXiv:gr-qc/9310026.
[5] Susskind, L., J. Math. Phys.36 (1995) 6377, arXiv:hep-th/9409089.
[6] Hinton, G. E. and Salakhutdinov, R. R., Science313 (2006) 504.
[7] Bengio, Y. and LeCun, Y., Scaling learning algorithms towards AI, in Large-Scale Kernel Machines, Vol. 34 (2007).
[8] LeCun, Y., Bengio, Y. and Hinton, G., Nature521 (2015) 436.
[9] Deng, L. and Yu, D., Found. Trends Signal Process.7 (2014) 197.
[10] Rumelhart, E. D., Hinton, G. E., Geoffrey, E. and Williams, J. R., Nature323 (1986) 533.
[11] R. Frank, The Perceptron — A perceiving and recognizing automaton, Report 85-460-1, Cornell Aeronautical Laboratory (1957).
[12] C. Bény, Deep Learning and the Renormalization Group, arXiv:1301.3124 [quant-ph].
[13] Mehta, P. and Schwab, D. J., An exact mapping between the Variational Renormalization Group and Deep Learning, arXiv:1410.3831 [stat].
[14] Swingle, B., Phys. Rev. D86 (2012) 065007, arXiv:0905.1317 [cond-mat.str-el].
[15] Gan, W. C. and Shu, F. W., Int. J. Mod. Phys. D26 (2017) 1743020, arXiv:1705.05750 [gr-qc].
[16] Hashimoto, K., Sugishita, S., Tanaka, A. and Tomiya, A., Phys. Rev. D98 (2018) 046019, arXiv:1802.08313 [hep-th].
[17] Reissner, H., Ann. Phys.50 (1916) 106(in German).
[18] Weyl, H., Ann. Phys.54 (1917) 117(in German).
[19] Nordström, G., Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam26 (1918) 1201.
[20] Jeffery, G. B., Proc. Roy. Soc. Lond. A99 (1921) 123.
[21] Ketkar, N., Introduction to pytorch, in Deep Learning with Python (Apress, Berkeley, CA, 2017), pp. 195-208.
[22] A. Paszke, S. Gross, S. Chintala et al., “Automatic differentiation in PyTorch,” in Proc. of The future of gradient based machine learning software and techniques (Autodiff) in the twenty-ninth annual conference on neural information processing systems (NIPS), 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.