zbMATH — the first resource for mathematics

A new updating method for the damped mass-spring systems. (English) Zbl 1460.70017
Summary: In this paper, we concern the inverse problem of constructing a monic quadratic pencil which possesses the prescribed partial eigendata, and the damping matrix and stiffness matrix are symmetric tridiagonal. Furthermore, the stiffness matrix is positive semi-definite and weakly diagonally dominant, which has positive diagonal elements and negative off-diagonal elements. Based on the solution of the inverse eigenvalue problem, we apply the alternating direction method with multiplier to solve the finite element model updating problem for the serially linked mass-spring system. The positive semi-definiteness of stiffness matrix, nonnegativity of stiffness and the physical connectivity of the original model are preserved. Numerical results show that our proposed method works well.

70J35 Forced motions in linear vibration theory
65L09 Numerical solution of inverse problems involving ordinary differential equations
65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
34A55 Inverse problems involving ordinary differential equations
Full Text: DOI
[1] Tisseur, F.; meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43, 2, 235-286 (2001) · Zbl 0985.65028
[2] Chu, M. T.; Buona, N. D.; Yu, B., Structured quadratic inverse eigenvalue problem, I. Serially linked systems, SIAM J. Sci. Comput., 29, 6, 2668-2685 (2007) · Zbl 1154.65313
[3] Chu, M. T.; Kuo, Y. C.; Lin, W., On inverse quadratic eigenvalue problems with partially prescribed eigenstructure, SIAM J. Matrix Anal. Appl, 25, 4, 995-1020 (2004) · Zbl 1070.65024
[5] Bai, Z. J., Symmetric tridiagonal inverse quadratic eigenvalue problems with partial eigendata, Inverse Probl., 24, 1, 364-374 (2008)
[6] Bai, Z. J., Constructing the physical parameters of a damped vibrating system from eigendata, Linear Algebra Appl., 428, 2, 625-656 (2008) · Zbl 1139.65029
[7] Bai, Z. J.; Ching, W. K., A smoothing Newton’s method for the construction of a damped vibrating system from noisy test eigendata, Numer. Linear Algebra Appl., 16, 109-128 (2009) · Zbl 1224.70023
[8] Bai, Z. J.; Chen, M. X.; Yuan, X. M., Application of the alternating direction method of multipliers to the semidefinite inverse quadratic eigenvalue problem with partial eigenstruture, Inverse Probl., 29, 075011 (2013) · Zbl 1280.65036
[9] Bai, Z. J.; Chu, D.; Sun, D., A dual optimization approach to inverse quaratic eigenvalue problems with partial eigenstructure, SIAM J. Sci. Comput., 29, 2531-2561 (2007) · Zbl 1154.65312
[10] Datta, B.; Sokolov, V., A solution of the affine quadratic inverse eigenvalue problem, Linear Algebra Appl., 434, 1745-1760 (2011) · Zbl 1211.65047
[11] Ram, Y. M.; Elhay, S., An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application to damped oscillatory systems, SIAM J. Appl. Math., 56, 1, 232-244 (1996) · Zbl 0853.15005
[12] Chu, M. T.; Golub, G. H., Inverse Eigenvalue Problems: Theory, Algorithms, and Applications (2005), Oxford University Press · Zbl 1075.65058
[13] Minas, C.; Inman, D. J., Matching finite element models to modal data, Trans. ASME J. Vib. Acoust., 112, 1745-1760 (1990)
[14] Mottershead, J. E.; Friswell, M. I., Model updating in structural dynamics: a survey, J. Sound Vib., 167, 347-375 (1993) · Zbl 0967.74525
[15] Friswell, M. I.; Mottershead, J. E., Finite Element Model Updating in Structural Dynamics (1995), Kluwer Academic Publishers: Kluwer Academic Publishers The Netherlands · Zbl 0855.73002
[16] Friswell, M. I.; Inman, D. J.; Pilkey, D. F., The direct updating of damping and stiffness matrices, AIAA J., 36, 491-493 (1998)
[17] Kuo, Y. C.; Lin, W. W.; Xu, S. F., New methods for finite element model updating problems, AIAA J., 44, 1310-1316 (2006)
[18] Chu, M. T.; Lin, W. W.; Xu, S. F., Updating quadratic models with no spill-over effect on unmeasured spectral data, Inverse Probl., 23, 243-256 (2007) · Zbl 1107.93003
[19] Chu, M. T.; Datta, B. N.; Lin, W. W.; Xu, S. F., The spill-over phenomenon in quadratic model updating, AIAA J., 46, 420-428 (2008)
[20] Chu, D.; Chu, M. T.; Lin, W. W., Quadratic model updating with symmetric, positive definiteness, and no spill-over, SIAM J. Matrix Anal. Appl., 31, 546-564 (2009) · Zbl 1194.65060
[21] Moreno, M.; Datta, B. N.; Raydan, M., A symmetry preserving alternating projection method for matrix model updating, Mech. Syst. Signal Process., 23, 1784-1791 (2009)
[22] Kuo, Y. C.; Datta, B. N., Quadratic model updating with no spill-over and incomplete measured data: existence and computation of solution, Linear Algebra Appl., 436, 2480-2493 (2012) · Zbl 1236.65037
[23] Yuan, Y.; Liu, H., An iterative method for solving finite element model updating problems, Appl. Math. Model., 35, 848-858 (2011) · Zbl 1205.74169
[24] Liu, H.; Yuan, Y., A gradient based iterative algorithm for solving model updating problems of gyroscopic systems, Appl. Math. Model., 36, 4810-4816 (2012) · Zbl 1252.70017
[25] Zhao, K.; Yao, G. Z., Application of the alternating direction method for an inverse monic quadratic eigenvalue problem, Appl. Math. Comput., 244, 2, 32-41 (2014) · Zbl 1335.15020
[26] Magnus, J. R., \(l\)-structured matrices and linear matrix equations, Linear Multilinear Algebra, 14, 67-88 (1983) · Zbl 0527.15006
[27] BenIsrael, A.; Greville, T., Generalized Inverse: Theory and Applications (1974), Wiley: Wiley New York
[28] Benner, P.; Laub, A. J.; Mehrmann, V., A Collection of Benchmark Examples for the Numerical Solution of Algebraic Riccati Equations I: Continuous-time Case (1995), Fak. f. Mathematik, TU Chemnitz-Zwickau, Technical report SPC 95-22
[29] Hong, M.; Luo, Z.-Q.; Razaviyayn, M., Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems, SIAM J. Optim., 26, 1, 337-364 (2016) · Zbl 1356.49061
[31] Jiang, B.; Ma, S.; Zhang, S., Alternating direction method of multipliers for real and complex polynomial optimization models, Optimization, 63, 6, 883-898 (2014) · Zbl 1291.90242
[32] Lasserre, J. B., Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11, 796-817 (2001) · Zbl 1010.90061
[33] Parrilo, P. A., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimizatio (2000), California Institute of Technology: California Institute of Technology Pasadena, CA, Ph.D. Dissertation
[34] Chen, B.; He, S.; Li, Z.; Zhang, S., Maximum block improvement and polynomial optimization, SIAM J. Optim., 22, 87-107 (2012) · Zbl 1250.90069
[35] Xu, Y.; Yin, W.; Wen, Z.; Zhang, Y., An alternating direction algorithm for matrix completion with nonnegative factors, Front. Math. China, 7, 2, 365-384 (2012) · Zbl 1323.65044
[36] Henrion, D.; Lasserre, J. B.; Loefberg, J., GloptiPoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw., 24, 761-779 (2009) · Zbl 1178.90277
[37] Waki, H.; Kim, S.; Kojima, M.; Muramatsu, M.; Sugimoto, H., Alogrithm 883: SparsePOP - a sparse semidefinite programming relaxation of polynomial optimization problems, ACM Trans. Math. Softw., 35, 2, 1-13 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.