×

zbMATH — the first resource for mathematics

Construction of confidence intervals for the Laspeyres price index. (English) Zbl 07183243
Summary: In the paper, we present and discuss several methods of the construction of confidence intervals for the Laspeyres price index. We assume that prices of commodities are normally distributed and we consider both independent and dependent prices. Using Monte Carlo simulation, the paper compares the confidence interval computed from a simple econometric model with those obtained based on the Laspeyres density function. Our conclusions can be generalized to other price index formulas.
MSC:
62 Statistics
Software:
zoverw
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] von der Lippe P. Index theory and price statistics. Frankfurt: Peter Lang; 2007. [Crossref], [Google Scholar] · Zbl 1128.91017
[2] Balk BM. A method for constructing price indices for seasonal commodities. J R Stat Soc A. 1980;143:68-75. doi: 10.2307/2981770[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0423.62090
[3] Clements KW, Izan HY. A note on estimating divisia index numbers. Internat Econom Rev. 1981;22:745-747. doi: 10.2307/2526174[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0474.62110
[4] Clements KW, Izan HY. The measurement of inflation: a stochastic approach. J Bus Econ Stat. 1987;5:339-350. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[5] Bryan MF, Cecchetti SG. The consumer price index as a measure of inflation. Econ Rev. 1993;29:15-24. [Google Scholar]
[6] Selvanathan EA, Prasada Rao DS. Index numbers: a stochastic approach. Ann Arbor: The University of Michigan Press; 1994. [Google Scholar]
[7] Clements KW, Izan HY, Selvanathan EA. Stochastic index numbers: a review. Int Statist Rev. 2006;74(2):235-270. doi: 10.1111/j.1751-5823.2006.tb00172.x[Crossref], [Web of Science ®], [Google Scholar]
[8] Diewert WE. On the stochastic approach to index numbers. Discussion Paper No. 05-31, Department of Economics, University of British Columbia; 1995. [Google Scholar]
[9] Silver M, Heravi S. Why elementary price index number formulas differ: evidence on price dispersion. J Econometrics. 2007;140:874-883. doi: 10.1016/j.jeconom.2006.07.017[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1247.91146
[10] Marsaglia G. Ratios of normal variables. J Statist Softw. 2006;16(4):1-10. [Web of Science ®], [Google Scholar]
[11] Hinkley D. On the ratio of two correlated normal random variables. Biometrika. 1969;56:635-639. doi: 10.1093/biomet/56.3.635[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0183.48101
[12] Marsaglia G. Ratios of normal variables and ratios of sums of uniform variables. J Amer Statist Assoc. 1965;60: 193-204. doi: 10.1080/01621459.1965.10480783[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0126.35302
[13] Maraglia G. Evaluating the normal distribution. J Statist Softw. 2004;11(4):1-11. [Google Scholar]
[14] Hayya J, Armstrong D, Gressis N. A note on the ratio of two normally distributed variables. Manage Sci. 1975;21(11):1338-1341. doi: 10.1287/mnsc.21.11.1338[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0309.62011
[15] White AG. Measurement biases in consumer price indexes. Int Stat Rev. 1999;67(3):301-325. doi: 10.1111/j.1751-5823.1999.tb00451.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0958.91058
[16] De Haan. Generalised fisher price indexes and the use of scanner data in the consumer price index (CPI). J Official Stat. 2002;18(1):61-85. [Google Scholar]
[17] Pham-Gia T, Turkkan N, Marchand E. Density of the ratio of two normal random variables and applications. Comm Statist Theory Methods. 2006;35(9):1569-1591. doi: 10.1080/03610920600683689[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1105.62018
[18] Kermond J. An introduction to the algebra of random variables. Mathematical association of Victoria 47th annual conference proceedings – new curriculum. New Opportunities (The Mathematical Association of Victoria); Cliveden, Australia; 2010. p. 1-16. [Google Scholar]
[19] Żądło T. On prediction of total value in incompletely specified domains. Aust N Z J Stat. 2006;48:269-283. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1108.62011
[20] Żądło T. On MSE of EBLUP. Statist Papers. 2009;50:101-118. [Google Scholar] · Zbl 1312.62014
[21] Białek J. Application of stochastic index numbers in inflation measurement – the case of Poland. Statistika-Stat Econ J. 2014;94(2):46-53. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.