zbMATH — the first resource for mathematics

Adaptive continuation solid isotropic material with penalization for volume constrained compliance minimization. (English) Zbl 1436.74053
Summary: In this paper, the traditional decreasing tolerance continuation solid isotropic material with penalization (CSIMP) was extended by providing a way to adapt the penalty step between subproblems, decreasing the number of subproblems solved. Four linearly elastic, volume constrained, compliance minimization problems were used to test the efficacy of the penalty adaptation for different parameter settings. Three of the problems are common 2D test problems and one is 3D. The main factors affecting the efficacy of the penalty adaptation were identified. Experimental results confirmed that the penalty adaptation successfully reduces the number of finite element analysis (FEA) simulations needed to converge to the optimal solution when using the decreasing tolerance CSIMP (Dec-Tol CSIMP), with exponentially decaying tolerance. In particular, the number of FEA simulations required by Dec-Tol CSIMP was cut down by an average of \(28.8\%\) with no more than \(4.1\%\) increase in the objective value in the worst case. Finally, a mathematical and experimental treatment of the effect of \(x_{\min}\) on the convergence of the SIMP algorithm was given, with recommendations for choosing a suitable value for \(x_{\min}\).
74P05 Compliance or weight optimization in solid mechanics
74P15 Topological methods for optimization problems in solid mechanics
90C30 Nonlinear programming
Full Text: DOI
[1] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202 (1989)
[2] Sigmund, O., A 99 line topology optimization code written in matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[3] Rojas-Labanda, Susana; Stolpe, Mathias, Automatic penalty continuation in structural topology optimization, Struct. Multidiscip. Optim., 52, 6, 1205-1221 (2015)
[4] Xie, Y. M.; Steven, G. P., Shape and layout optimization via an evolutionary procedure., (Proceedings of the International Conference Comput. Eng. (Hong Kong) (1992), Hong Kong University), 421
[5] X.Y. Yang, Y.M. Xie, G.P. Steven, O.M. Querin, Bi-directional evolutionary structural optimization, in: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium Multidisc Anal. Optim (St. Louis), 1998, pp. 1449-1457.
[6] Huang, Xiaodong; Xie, Yi Min, A further review of ESO type methods for topology optimization, Struct. Multidiscip. Optim., 41, 5, 671-683 (2010)
[7] Payten, W. M.; Law, M., Generalized shape optimization using stress constraints under multiple load cases, Struct. Optim., 15, 3-4, 269-274 (1998)
[8] Bruggi, Matteo; Duysinx, Pierre, Topology optimization for minimum weight with compliance and stress constraints, Struct. Multidiscip. Optim., 46, 3, 369-384 (2012) · Zbl 1274.74219
[9] Yang, R. J.; Chen, C. J., Stress-based topology optimization, Struct. Optim., 12, 2-3, 98-105 (1996)
[10] Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.; Sigmund, Ole; Aage, Niels, Combined shape and topology optimization for minimization of maximal von mises stress, Struct. Multidiscip. Optim., 55, 5, 1541-1557 (2017)
[11] Neves, M. M.; Rodrigues, H.; Guedes, J. M., Generalized topology design of structures with a buckling load criterion, Struct. Optim., 10, 71-78 (1995)
[12] Rahmatalla, Salam; Swan, Colby C., Continuum topology optimization of buckling-sensitive structures, AIAA J., 41, 6, 1180-1189 (2003)
[13] Munk, David J.; Vio, Gareth A.; Steven, Grant P., A simple alternative formulation for structural optimisation with dynamic and buckling objectives, Struct. Multidiscip. Optim., 55, 3, 969-986 (2017)
[14] Collet, Maxime; Bruggi, Matteo; Duysinx, Pierre, Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance, Struct. Multidiscip. Optim., 55, 3, 839-855 (2017)
[15] Amir, Oded, Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity, Struct. Multidiscip. Optim., 55, 5, 1797-1818 (2017)
[16] Oest, Jacob; Lund, Erik, Topology optimization with finite-life fatigue constraints, Struct. Multidiscip. Optim., 56, 5, 1045-1059 (2017)
[17] Kočvara, Michal; Stingl, Michael, Solving nonconvex SDP problems of structural optimization with stability control, Optim. Methods Softw., 19, 5 SPEC. ISS., 595-609 (2004) · Zbl 1135.49304
[18] Browne, Philip, Topology Optimization of Linear Elastic Structures (2013), (Ph.D. thesis)
[19] Deng, Shiguang; Suresh, Krishnan, Topology optimization under thermo-elastic buckling, Struct. Multidiscip. Optim., 55, 5, 1759-1772 (2017)
[20] Sigmund, Ole, On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach., 25, 4, 493-524 (1997)
[21] Maute, Kurt; Ramm, Ekkehard, Adaptive topology optimization of elastoplastic structures, Struct. Optim., 15, 81-91 (1998)
[22] Zargham, Sajjad; Ward, Thomas Arthur; Ramli, Rahizar; Badruddin, Irfan Anjum, Topology optimization: a review for structural designs under vibration problems, Struct. Multidiscip. Optim., 53, 6, 1157-1177 (2016)
[23] Allaire, Grégoire; Jouve, François, A level-set method for vibration and multiple loads, Comput. Methods Appl. Mech. Engrg., 1-28 (2004) · Zbl 1091.74038
[24] Lee, Edmund; James, Kai A.; Martins, Joaquim R. R.A., Stress-constrained topology optimization with design-dependent loading, Struct. Multidiscip. Optim., 46, 5, 647-661 (2012) · Zbl 1274.74362
[25] Zhang, Xiaopeng; Kang, Zhan; Zhang, Wenbo, Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis, Struct. Multidiscip. Optim., 54, 6, 1469-1484 (2016)
[26] Suresh, Krishnan, A 199-line matlab code for pareto-optimal tracing in topology optimization, Struct. Multidiscip. Optim., 42, 5, 665-679 (2010) · Zbl 1274.74005
[27] Sato, Yuki; Izui, Kazuhiro; Yamada, Takayuki; Nishiwaki, Shinji, Pareto frontier exploration in multiobjective topology optimization using adaptive weighting and point selection schemes, Struct. Multidiscip. Optim., 55, 2, 409-422 (2017)
[28] Stolpe, M.; Svanberg, K., An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim., 22, 2, 116-124 (2001)
[29] Svanberg, K., The method of moving asymptotes - a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[30] Svanberg, Krister, A class of globally convergent optimization methods based on conservative convex separable approximations, SIAM J. Optim., 12, 2, 555-573 (2002) · Zbl 1035.90088
[31] Wächter, A.; Biegler, L. T., On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Techreport, 25-57 (2006) · Zbl 1134.90542
[32] Nocedal, Jorge; Wright, Stephen J., Numerical Optimization (2006), Springer Sc · Zbl 1104.65059
[33] Rietz, A., Sufficiency of a finite exponent in SIMP (power law) methods, Struct. Multidiscip. Optim., 21, 2, 159-163 (2001)
[34] Martínez, J. M., A note on the theoretical convergence properties of the SIMP method, Struct. Multidiscip. Optim., 29, 4, 319-323 (2005) · Zbl 1243.90210
[35] Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole, Approximate reanalysis in topology optimization, Internat. J. Numer. Methods Engrg., 78, 12, 1474-1491 (2009) · Zbl 1183.74216
[36] Amir, Oded, Revisiting approximate reanalysis in topology optimization: on the advantages of recycled preconditioning in a minimum weight procedure, Struct. Multidiscip. Optim., 51, 1, 41-57 (2015)
[37] Zheng, Shaopeng; Zhao, Xuqi; Yu, Yongping; Sun, Youhong, The approximate reanalysis method for topology optimization under harmonic force excitations with multiple frequencies, Struct. Multidiscip. Optim., 56, 5, 1185-1196 (2017)
[38] Amir, Oded; Aage, Niels; Lazarov, Boyan S., On multigrid-CG for efficient topology optimization, Struct. Multidiscip. Optim., 49, 5, 815-829 (2014)
[39] Maute, K.; Ramm, E., Adaptive topology optimization, Struct. Optim., 10, 2, 100-112 (1995)
[40] Stainko, Roman, An adaptive multilevel approach to the minimal compliance problem in topology optimization, Commun. Numer. Methods. Eng., 22, 2, 109-118 (2006) · Zbl 1095.74023
[41] Wang, Shun; de Sturler, Eric; Paulino, Glaucio H., Dynamic adaptive mesh refinement for topology optimization, 1-23 (2010), URL http://arxiv.org/abs/1009.4975
[42] Bruggi, Matteo; Verani, Marco, A fully adaptive topology optimization algorithm with goal-oriented error control, Comput. Struct., 89, 15-16, 1481-1493 (2011)
[43] Wang, Yi Qiang; He, Jing Jie; Luo, Zhen; Kang, Zhan, An adaptive method for high-resolution topology design, Acta Mech. Sin., 29, 6, 840-850 (2013) · Zbl 1346.74156
[44] Wang, Yiqiang; Kang, Zhan; He, Qizhi, Adaptive topology optimization with independent error control for separated displacement and density fields, Comput. Struct., 135, 50-61 (2014)
[45] Salazar de Troya, Miguel A.; Tortorelli, Daniel A., Adaptive mesh refinement in stress-constrained topology optimization, Struct. Multidiscip. Optim., 58, 6, 2369-2386 (2018)
[46] Lambe, Andrew B.; Czekanski, Aleksander, Topology optimization using a continuous density field and adaptive mesh refinement, Internat. J. Numer. Methods Engrg., 113, 3, 357-373 (2018)
[47] Stolpe, M.; Svanberg, K., On the trajectories of penalization methods for topology optimization, Struct. Multidiscip. Optim., 21, 2, 128-139 (2001)
[48] Svanberg, K., On the convexity and concavity of compliances, Struct. Optim., 7, 1-2, 42-46 (1994)
[49] Boyd, Stephen; Vandenberghe, Lieven, Convex optimization (2009) · Zbl 1058.90049
[50] Dadalau, A.; Hafla, A.; Verl, A., A new adaptive penalization scheme for topology optimization, Prod. Eng., 3, 4-5, 427-434 (2009)
[51] Gao, Xingjun; Li, Lijuan; Ma, Haitao, An adaptive continuation method for topology optimization of continuum structures considering buckling constraints, Int. J. Appl. Mech., 9, 7, 1750092 (2017)
[52] Aage, Niels; Andreassen, Erik; Lazarov, Boyan Stefanov, Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework, Struct. Multidiscip. Optim., 51, 3, 565-572 (2015)
[53] Amdahl, Gene M., Validity of the single processor approach to achieving large scale computing capabilities, (AFIPS Joint Spring Conference Proceedings 30 (Atlantic City, NJ, Apr. 18-20) (1967), AFIPS Press: AFIPS Press Reston VA), 483-485
[54] Valdez, S. Ivvan; Botello, Salvador; Ochoa, Miguel A.; Marroquín, José L.; Cardoso, Victor, Topology optimization benchmarks in 2d: Results for minimum compliance and minimum volume in planar stress problems, Arch. Comput. Methods Eng., 24, 4, 803-839 (2017) · Zbl 1391.74208
[55] Deepak, Sangamesh R.; Dinesh, M.; Sahu, Deepak K.; Ananthasuresh, G. K., A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms, J. Mech. Robot., 1, 1, 011003 (2009)
[56] Rojas-Labanda, Susana; Stolpe, Mathias, Benchmarking optimization solvers for structural topology optimization, Struct. Multidiscip. Optim., 52, 3, 527-547 (2015)
[57] Bendsøe, Martin Philip; Sigmund, Ole, Topology Optimization: Theory, Methods and Applications. (2004), Springer-Verlag: Springer-Verlag Berlin Heidelberg
[58] Bezanson, Jeff; Edelman, Alan; Karpinski, Stefan; Shah, Viral B., Julia: A fresh approach to numerical computing (2014) · Zbl 1356.68030
[59] K. M.ogensen, Patrick; N. R.iseth, Asbjørn, Optim: A mathematical optimization package for julia, Journal of Open Source Software, 3, 24, 615 (2018), URL http://joss.theoj.org/papers/10.21105/joss.00615
[60] Hager, William W.; Zhang, Hongchao, Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent, ACM Trans. Math. Softw. (TOMS), 32, 1, 113-137 (2006), URL http://portal.acm.org/citation.cfm?id=1132979 · Zbl 1346.90816
[61] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Internat. J. Numer. Methods Engrg., 61, 2, 238-254 (2004) · Zbl 1079.74599
[62] Golub, G. H.; Loan, C. F.V., Matrix computations, (Book, Vol. 10 (1996)), 48
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.