×

zbMATH — the first resource for mathematics

New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties. (English) Zbl 1436.74060
Summary: This study presents a hybrid reliability-based topology optimization (RBTO) method for handling epistemic and aleatory uncertainties. First, we establish a new triple-nested RBTO model based on fuzzy and probabilistic theory for describing the multi-source uncertainties. Subsequently, an efficient single-loop optimization method is proposed to degrade the triple-nested optimization problem into a deterministic optimization problem using the Karush-Kuhn-Tucker optimality condition. Furthermore, the sensitivities of the hybrid reliability constraint with respect to the random probabilistic variables, fuzzy variables, and deterministic design variables are derived using the adjoint variable method. Finally, a cantilever beam example, an L-shape beam design and a 3D example are tested to verify the validity of the proposed single-loop method.
MSC:
74P15 Topological methods for optimization problems in solid mechanics
Software:
top.m
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bendsoe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[2] Sigmund, O., A 99 line topology optimization code written in matlab, Struct. Multidiscip. Optim., 21, 120-127 (2001)
[3] Huang, X.; Xie, Y., Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Comput. Mech., 43, 393-401 (2009) · Zbl 1162.74425
[4] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[5] Guo, X.; Zhang, W.; Zhong, W., Doing topology optimization explicitly and geometrically a new moving morphable components based framework, J. Appl. Mech., 81, 081009-081020 (2014)
[6] Xue, R.; Liu, C.; Zhang, W.; Zhu, Y.; Tang, S.; Du, Z.; Guo, X., Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach, Comput. Methods Appl. Mech. Engrg., 344, 798-818 (2019)
[7] Sigmund, O.; Maute, K., Topology optimization approaches, Struct. Multidiscip. Optim., 48, 1031-1055 (2013)
[8] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1-38 (2014)
[9] Papadrakakis, M.; Lagaros, N. D., Reliability-based structural optimization using neural networks and Monte Carlo simulation, Comput. Methods Appl. Mech. Engrg., 191, 3491-3507 (2002) · Zbl 1101.74377
[10] Sato, Y.; Izui, K.; Yamada, T.; Nishiwaki, S.; Ito, M.; Kogiso, N., Reliability-based topology optimization under shape uncertainty modeled in Eulerian description, Struct. Multidiscip. Optim., 59, 75-91 (2019)
[11] Wang, L.; Liu, D.; Yang, Y.; Hu, J., Novel methodology of non-probabilistic reliability-based topology optimization (NRBTO) for multi-material layout design via interval and convex mixed uncertainties, Comput. Methods Appl. Mech. Engrg., 346, 550-573 (2019)
[12] da Silva, G. A.; Beck, A. T., Reliability-based topology optimization of continuum structures subject to local stress constraints, Struct. Multidiscip. Optim., 57, 2339-2355 (2018)
[13] da Silva, G. A.; Beck, A. T.; Cardoso, E. L., Topology optimization of continuum structures with stress constraints and uncertainties in loading, Internat. J. Numer. Methods Engrg., 113, 153-178 (2018)
[14] Asadpoure, A.; Tootkaboni, M.; Guest, J. K., Robust topology optimization of structures with uncertainties in stiffness – application to truss structures, Comput. Struct., 89, 1131-1141 (2011)
[15] da Silva, G. A.; Beck, A. T.; Sigmund, O., Stress-constrained topology optimization considering uniform manufacturing uncertainties, Comput. Methods Appl. Mech. Engrg., 344, 512-537 (2019)
[16] Kang, Z.; Liu, P. S., Reliability-based topology optimization against geometric imperfections with random threshold model, Internat. J. Numer. Methods Engrg., 115, 99-116 (2018)
[17] Meng, Z.; Keshtegar, B., Adaptive conjugate single-loop method for efficient reliability-based design and topology optimization, Comput. Methods Appl. Mech. Engrg., 344, 95-119 (2019)
[18] Zheng, J.; Luo, Z.; Jiang, C.; Wu, J., Level-set topology optimization for robust design of structures under hybrid uncertainties, Internat. J. Numer. Methods Engrg., 117, 523-542 (2019)
[19] Jansen, M.; Lombaert, G.; Schevenels, M., Robust topology optimization of structures with imperfect geometry based on geometric nonlinear analysis, Comput. Methods Appl. Mech. Engrg., 285, 452-467 (2015) · Zbl 1423.74749
[20] Long, K.; Wang, X.; Du, Y., Robust topology optimization formulation including local failure and load uncertainty using sequential quadratic programming, J. Mech. Des., 15, 317-332 (2019)
[21] Jalalpour, M.; Tootkaboni, M., An efficient approach to reliability-based topology optimization for continua under material uncertainty, Struct. Multidiscip. Optim., 53, 759-772 (2016)
[22] Rashki, M., Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability, Appl. Math. Model., 60, 220-234 (2018) · Zbl 07167953
[23] Luo, Y. J.; Li, A.; Kang, Z., Reliability-based design optimization of adhesive bonded steel-concrete composite beams with probabilistic and non-probabilistic uncertainties, Eng. Struct., 33, 2110-2119 (2011)
[24] Ni, B. Y.; Jiang, C.; Han, X., An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis, Appl. Math. Model., 40, 4727-4745 (2016) · Zbl 07159907
[25] Ni, B. Y.; Jiang, C.; Huang, Z. L., Discussions on non-probabilistic convex modelling for uncertain problems, Appl. Math. Model., 59, 54-85 (2018) · Zbl 07167898
[26] Xia, B.; Yu, D., Optimization based on reliability and confidence interval design for the structural-acoustic system with interval probabilistic variables, J. Sound Vib., 336, 1-15 (2015)
[27] Xia, B.; Yu, D., An interval random perturbation method for structural-acoustic system with hybrid uncertain parameters, Internat. J. Numer. Methods Engrg., 97, 181-206 (2014) · Zbl 1352.74092
[28] Kharmanda, G.; Olhoff, N.; Mohamed, A.; Lemaire, M., Reliability-based topology optimization, Struct. Multidiscip. Optim., 26, 295-307 (2004)
[29] Bobby, S.; Suksuwan, A.; Spence, S. M.J.; Kareem, A., Reliability-based topology optimization of uncertain building systems subject to stochastic excitation, Struct. Saf., 66, 1-16 (2017)
[30] Kang, Z.; Luo, Y., Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models, Comput. Methods Appl. Mech. Engrg., 198, 3228-3238 (2009) · Zbl 1230.74153
[31] Xia, B.; Lü, H.; Yu, D.; Jiang, C., Reliability-based design optimization of structural systems under hybrid probabilistic and interval model, Comput. Struct., 160, 126-134 (2015)
[32] Keshtegar, B.; Bagheri, M., Fuzzy relaxed-finite step size method to enhance the instability of the fuzzy first-order reliability method using conjugate discrete map, Stud. Nonlinear Dyn. Econom., 91, 1443-1459 (2018)
[33] Yin, H.; Yu, D.; Xia, B., Reliability-based topology optimization for structures using fuzzy set model, Comput. Methods Appl. Mech. Engrg., 333, 197-217 (2018)
[34] Jiang, C.; Qiu, H.; Yang, Z.; Chen, L.; Gao, L.; Li, P., A general failure-pursuing sampling framework for surrogate-based reliability analysis, Reliab. Eng. Syst. Saf., 183, 47-59 (2019)
[35] Meng, Z.; Zhang, Z.; Zhou, H., A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters, Appl. Math. Model., 77, 773-787 (2020)
[36] Massa, F.; Tison, T.; Lallemand, B., A fuzzy procedure for the static design of imprecise structures, Comput. Methods Appl. Mech. Engrg., 195, 925-941 (2006) · Zbl 1115.74052
[37] Stefanou, G.; Savvas, D.; Papadrakakis, M., Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties, Comput. Methods Appl. Mech. Engrg., 326, 319-337 (2017)
[38] Xia, B.; Yu, D.; Han, X.; Jiang, C., Unified response probability distribution analysis of two hybrid uncertain acoustic fields, Comput. Methods Appl. Mech. Engrg., 276, 20-34 (2014) · Zbl 1423.76410
[39] Xia, B.; Yu, D., Change-of-variable interval stochastic perturbation method for hybrid uncertain structural-acoustic systems with random and interval variables, J. Fluids Struct., 50, 461-478 (2014)
[40] Aoues, Y.; Chateauneuf, A., Benchmark study of numerical methods for reliability-based design optimization, Struct. Multidiscip. Optim., 41, 277-294 (2010) · Zbl 1274.90115
[41] Meng, Z.; Zhang, Z.; Li, G.; Zhang, D., An active weight learning method for efficient reliability assessment with small failure probability, Struct. Multidiscip. Optim. (2020)
[42] Jiang, C.; Qiu, H.; Gao, L.; Wang, D.; Yang, Z.; Chen, L., Real-time estimation error-guided active learning Kriging method for time-dependent reliability analysis, Appl. Math. Model., 77, 82-98 (2020)
[43] Cheng, G.; Xu, L.; Jiang, L., A sequential approximate programming strategy for reliability-based structural optimization, Comput. Struct., 84, 1353-1367 (2006)
[44] Jiang, Q.; Chen, C. H., A numerical algorithm of fuzzy reliability, Reliab. Eng. Syst. Saf., 80, 299-307 (2003)
[45] Tang, Z.; Lu, Z.; Hu, J., An efficient approach for design optimization of structures involving fuzzy variables, Fuzzy Sets Syst., 255, 52-73 (2014)
[46] Jeong, S. B.; Park, G. J., Single loop single vector approach using the conjugate gradient in reliability based design optimization, Struct. Multidiscip. Optim., 55, 1329-1344 (2017)
[47] Wang, L.; Cai, Y.; Liu, D., Multiscale reliability-based topology optimization methodology for truss-like microstructures with unknown-but-bounded uncertainties, Comput. Methods Appl. Mech. Engrg., 339, 358-388 (2018)
[48] Jiang, C.; Qiu, H.; Li, X.; Chen, Z.; Gao, L.; Li, P., Iterative reliable design space approach for efficient reliability-based design optimization, Eng. Comput., 36, 151-169 (2020)
[49] Meng, Z.; Zhou, H., New target performance approach for a super parametric convex model of non-probabilistic reliability-based design optimization, Comput. Methods Appl. Mech. Engrg., 339, 644-662 (2018)
[50] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Multidiscip. Optim., 16, 68-75 (1998)
[51] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 124, 359-373 (1987) · Zbl 0602.73091
[52] Youn, B. D.; Choi, K. K., An investigation of nonlinearity of reliability-based design optimization approaches, J. Mech. Des., 126, 403-411 (2004)
[53] Chen, Z. Z.; Qiu, H. B.; Gao, L.; Su, L.; Li, P. G., An adaptive decoupling approach for reliability-based design optimization, Comput. Struct., 117, 58-66 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.