An overlapping domain decomposition preconditioning method for monolithic solution of shear bands. (English) Zbl 1439.74391

Summary: Metals subjected to high strain rate impact often exhibit a sudden and profound drop in the material’s load bearing capability, a ductile failure phenomenon known as shear banding. Shear bands, characterized as material instabilities, are driven by shear heating and described as narrow regions that have sustained intense plastic deformation and high temperature rise. This coupled thermo-mechanical localization problem can be formulated as a nonlinear system with two balance equations, momentum and energy, and two constitutive laws for elasticity and plasticity. In our formulation, mixed finite elements are used to discretize the equations in space and an implicit finite difference scheme is used to advance the system in time, where at every time step, a Newton type method is used to solve the system monolithically. To that end, a block Jacobian matrix is formed analytically using Gâteaux derivatives. The resulting Jacobian is sparse, nonsymmetric and its sparsity pattern and eigenvalue content vary with the different stages of shear bands formation, consequently posing a significant challenge to iterative solvers. To address this issue, an overlapping Domain Decomposition preconditioner that takes into account the physics of shear bands and the domain in which it forms, is proposed. The key idea is to resolve the shear band domain accurately while only solving the remaining domain approximately, with selective updates when necessary. The preconditioner is formed on the basis of an additive Schwartz method that is applied to a Schur complement partition of the system. The proposed preconditioner is implemented in parallel and tested on three different benchmark problems as compared against off-the-shelf solvers. We study the effect of \(h\)- and \(k\)-refinement that are obtained from Isogeometric discretizations of the system, the overlapping strategy and its parallel performance. Excellent performance is demonstrated in serial and parallel on all benchmark examples.


74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
Full Text: DOI


[1] Tvergaard, V., Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17, 4, 389-407 (1981)
[2] Wright, T. W., (The Physics and Mathematics of Adiabatic Shear Bands. The Physics and Mathematics of Adiabatic Shear Bands, Cambridge Monographs on Mechanics (2002), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1006.74002
[3] Marchand, A.; Duffy, J., An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids, 36, 3, 251-283 (1988)
[4] Wright, T. W.; Walter, J. W., On stress collapse in adiabatic shear bands, J. Mech. Phys. Solids, 35, 6, 701-720 (1987)
[5] Cho, K.-M.; Lee, S.; Nutt, S. R.; Duffy, J., Adiabatic shear band formation during dynamic torsional deformation of an HY-100 steel, Acta Metall. Mater., 41, 3, 923-932 (1993)
[6] Bonnet-Lebouvier, A.-S; Molinari, A.; Lipinski, P., Analysis of the dynamic propagation of adiabatic shear bands, Int. J. Solids Struct., 39, 16, 4249-4269 (2002) · Zbl 1006.74503
[7] Shawki, T. G.; Clifton, R. J., Shear band formation in thermal viscoplastic materials, Mech. Mater., 8, 1, 13-43 (1989)
[8] Armero, F.; Simo, J. C., A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity, Int. J. Plast., 9, 6, 749-782 (1993) · Zbl 0791.73026
[9] Lemaitre, J.; Chaboche, J. L., Mechanics of Solid Materials (1994), Cambridge University Press: Cambridge University Press Cambridge
[10] Peirce, D.; Shih, C. F.; Needleman, A., A tangent modulus method for rate dependent solids, Comput. Struct., 18, 5, 875-887 (1984) · Zbl 0531.73057
[11] Al-Rub, R. K. Abu; Voyiadjis, G. Z., A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I - theoretical formulation, Int. J. Damage Mech., 15, 4, 293-334 (2006)
[12] Li, S.; Liu, W.-K.; Qian, D.; Guduru, P. R.; Rosakis, A. J., Dynamic shear band propagation and micro-structure of adiabatic shear band, Comput. Methods Appl. Mech. Engrg., 191, 1-2, 73-92 (2001), Micromechanics of Brittle Materials and Stochastic Analysis of Mechanical Systems · Zbl 1065.74061
[13] Belytschko, T.; Chiang, H.-Y.; Plaskacz, E., High resolution two-dimensional shear band computations: imperfections and mesh dependence, Comput. Methods Appl. Mech. Engrg., 119, 1-2, 1-15 (1994) · Zbl 0849.73064
[14] Zhou, M.; Ravichandran, G.; Rosakis, A. J., Dynamically propagating shear bands in impact-loaded prenotched plates-ii. Numerical simulations, J. Mech. Phys. Solids, 44, 6, 1007-1032 (1996)
[15] Li, S.; Liu, W. K., Numerical simulations of strain localization in inelastic solids using mesh-free methods, Internat. J. Numer. Methods Engrg., 48, 9, 1285-1309 (2000) · Zbl 1052.74618
[16] Li, S.; Hao, W.; Liu, W.-K., Mesh-free simulations of shear banding in large deformation, Int. J. Solids Struct., 37, 48-50, 7185-7206 (2000) · Zbl 0995.74082
[17] Liu, W. K.; McVeigh, C., Predictive multiscale theory for design of heterogeneous materials, Comput. Mech., 42, 2, 147-170 (2008) · Zbl 1304.74016
[18] McVeigh, C.; Liu, W. K., Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation, J. Mech. Phys. Solids, 58, 2, 187-205 (2010) · Zbl 1193.74124
[19] Loret, B.; Prevost, J. H., Dynamic strain localization in elasto-(visco-)plastic solids, Part 1. General formulation and one-dimensional examples, Comput. Methods Appl. Mech. Engrg., 83, 3, 247-273 (1990) · Zbl 0717.73030
[20] Aifantis, E. C., On the role of gradients in the localization of deformation and fracture, Internat. J. Engrg. Sci., 30, 10, 1279-1299 (1992) · Zbl 0769.73058
[21] Zbib, H. M.; Aifantis, E. C., On the gradient-dependent theory of plasticity and shear banding, Acta Mech., 92, 1, 209-225 (1992) · Zbl 0751.73022
[22] Anand, L.; Aslan, O.; Chester, S. A., A large-deformation gradient theory for elastic-plastic materials: strain softening and regularization of shear bands, Int. J. Plast., 30-31, 116-143 (2012)
[23] Batra, R. C.; Kim, C. H., Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands, Internat. J. Engrg. Sci., 29, 8, 949-960 (1991)
[24] Malcher, L.; Pires, F. M. Andrade; de Sá, J. M.A. César, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality, Int. J. Plast., 30-31, 81-115 (2012)
[25] Needleman, A., Material rate dependence and mesh sensitivity in localization problems, Comput. Methods Appl. Mech. Engrg., 67, 1, 69-85 (1988) · Zbl 0618.73054
[26] Medyanik, S. N.; Liu, W. K.; Li, S., On criteria for dynamic adiabatic shear band propagation, J. Mech. Phys. Solids, 55, 7, 1439-1461 (2007) · Zbl 1238.74024
[27] Zhou, M.; Needleman, A.; Clifton, R. J., Finite element simulations of shear localization in plate impact, J. Mech. Phys. Solids, 42, 3, 423-458 (1994) · Zbl 0800.73368
[28] Wright, T. W.; Batra, R. C., The initiation and growth of adiabatic shear bands, Int. J. Plast., 1, 3, 205-212 (1985)
[29] Batra, R. C., The initiation and growth of, and the interaction among, adiabatic shear bands in simple and dipolar materials, Int. J. Plast., 3, 1, 75-89 (1987)
[30] McAuliffe, C.; Waisman, H., Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements, Comput. Mech., 51, 5, 807-823 (2013) · Zbl 1308.74039
[31] McAuliffe, C.; Waisman, H., A Pian-Sumihara type element for modeling shear bands at finite deformation, Comput. Mech., 53, 5, 925-940 (2013) · Zbl 1398.74370
[32] Berger-Vergiat, L.; McAuliffe, C.; Waisman, H., Isogeometric analysis of shear bands, Comput. Mech., 54, 2, 503-521 (2014) · Zbl 1398.74304
[33] Lyness, J.; Moler, C., Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4, 2, 202-210 (1967) · Zbl 0155.48003
[34] Squire, W.; Trapp, G., Using complex variables to estimate derivatives of real functions, SIAM Rev., 40, 1, 110-112 (1998) · Zbl 0913.65014
[35] Pérez-Foguet, A.; Rodríguez-Ferran, A.; Huerta, A., Numerical differentiation for local and global tangent operators in computational plasticity, Comput. Methods Appl. Mech. Engrg., 189, 1, 277-296 (2000) · Zbl 0961.74078
[36] Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity, Comput. Methods Appl. Mech. Engrg., 134, 3-4, 223-240 (1996) · Zbl 0892.73012
[37] Berger-Vergiat, L.; Chen, X.; Waisman, H., Explicit and implicit methods for shear band modeling at high strain rates, Int. J. Fract. (2016), submitted for publication
[38] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[39] van der Vorst, H., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[40] Tuminaro, R. S.; Tong, C., Parallel smoothed aggregation multigrid: Aggregation strategies on massively parallel machines, (Proceedings of the 2000 ACM/IEEE Conference on Supercomputing. Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, Supercomputing’00 (2000), IEEE Computer Society: IEEE Computer Society Washington, DC, USA)
[41] Gee, M. W.; Siefert, C. M.; Hu, J. J.; Tuminaro, R. S.; Sala, M. G., ML 5.0 Smoothed Aggregation User’s Guide, Technical Report SAND2006-2649 (2006), Sandia National Laboratories
[42] Ipsen, I., A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Comput., 23, 3, 1050-1051 (2001) · Zbl 0998.65049
[43] Howle, V.; Kirby, R.; Dillon, G., Block preconditioners for coupled physics problems, SIAM J. Sci. Comput., 35, 5, S368-S385 (2013) · Zbl 1281.65055
[44] Elman, H.; Howle, V. E.; Shadid, J.; Shuttleworth, R.; Tuminaro, R., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, J. Comput. Phys., 227, 3, 1790-1808 (2008) · Zbl 1290.76023
[45] Cyr, E. C.; Shadid, J. N.; Tuminaro, R. S., Stabilization and scalable block preconditioning for the Navier-Stokes equations, J. Comput. Phys., 231, 2, 345-363 (2012) · Zbl 1426.76241
[46] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 1, 16-32 (1996) · Zbl 0845.65021
[47] Aagaard, B. T.; Knepley, M. G.; Williams, C. A., A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, J. Geophys. Res. : Solid Earth, 118, 6, 3059-3079 (2013)
[48] Rhebergen, S.; Wells, G.; Katz, R.; Wathen, A., Analysis of block preconditioners for models of coupled magma/mantle dynamics, SIAM J. Sci. Comput., 36, 4, A1960-A1977 (2014) · Zbl 1299.86001
[49] Cyr, E. C.; Shadid, J. N.; Tuminaro, R. S.; Pawlowski, R. P.; Chacón, L., A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD, SIAM J. Sci. Comput., 35, 3, 701-730 (2013) · Zbl 1273.76269
[50] Cai, X.-C.; Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21, 2, 792-797 (1999) · Zbl 0944.65031
[51] Rahul; De, S., An efficient block preconditioner for Jacobian-free global-local multiscale methods, Internat. J. Numer. Methods Engrg., 87, 7, 639-663 (2011) · Zbl 1242.74153
[52] Farhat, C.; Roux, F.-X., Method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg., 32, 6, 1205-1227 (1991) · Zbl 0758.65075
[53] Lloberas-Valls, O.; Rixen, D. J.; Simone, A.; Sluys, L. J., Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1577-1590 (2011) · Zbl 1228.74089
[54] Schwarz, H. A., Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschr. Naturforschenden Ges. Zürich, 15, 272-286 (1870)
[55] Cai, X.-C.; Gropp, W. D.; Keyes, D. E.; Melvin, R. G.; Young, D. P., Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19, 1, 246-265 (1998) · Zbl 0917.76035
[56] Keyes, D. E.; Gropp, W. D., A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation, SIAM J. Sci. Stat. Comput., 8, 2, s166-s202 (1987) · Zbl 0619.65088
[57] Gupta, V.; Duarte, C. A.; Babuška, I.; Banerjee, U., Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics, Comput. Methods Appl. Mech. Engrg., 289, 355-386 (2015) · Zbl 1423.74886
[58] Zhang, Shuhai; Oskay, Caglar, Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems, Comput. Mech., 55, 4, 771-787 (2015) · Zbl 1334.74088
[59] Berger-Vergiat, L.; Waisman, H.; Hiriyur, B.; Tuminaro, R.; Keyes, D., Inexact schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods, Internat. J. Numer. Methods Engrg., 90, 3, 311-328 (2012) · Zbl 1242.74094
[60] Waisman, Haim; Berger-Vergiat, Luc, An adaptive domain decomposition preconditioner for crack propagation problems modeled by XFEM, Int. J. Multiscale Comput. Eng., 11, 6 (2013)
[61] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[62] Bouclier, R.; Elguedj, T.; Combescure, A., Locking free isogeometric formulations of curved thick beams, Comput. Methods Appl. Mech. Engrg., 245-246, 0, 144-162 (2012) · Zbl 1354.74260
[63] Bazilevs, Y.; da Veiga, L. Beirao; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 07, 1031-1090 (2006) · Zbl 1103.65113
[64] Schur, J., Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math., 147, 205-232 (1917) · JFM 46.0475.01
[65] Smith, B. F.; Bjørstad, P.; Gropp, W., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge University Press · Zbl 0857.65126
[66] Cai, X.-C.; Dryja, M.; Sarkis, M., Restricted additive schwarz preconditioners with harmonic overlap for symmetric positive definite linear systems, SIAM J. Numer. Anal., 41, 4, 1209-1231 (2003) · Zbl 1052.65036
[68] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1998) · Zbl 0915.68129
[69] Gropp, W.; Lusk, E.; Skjellum, A., Using MPI, Third Edition: Portable Parallel Programming with the Message-Passing Interface (2014), MIT Press
[70] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. Curfman; Smith, B. F.; Zhang, H., PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.4 (2013), Argonne National Laboratory
[71] Brown, J.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Smith, B., Composable linear solvers for multiphysics, (Parallel and Distributed Computing (ISPDC), 2012 11th International Symposium on (2012)), 55-62, June
[73] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y., Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg., 184, 2-4, 501-520 (2000) · Zbl 0956.65017
[74] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.; Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018
[75] Amestoy, P. R.; Guermouche, A.; L’Excellent, J.-Y; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 2, 136-156 (2006), Parallel Matrix Algorithms and Applications (PMAA’04)
[76] George, A.; Liu, J. W.H., A fast implementation of the minimum degree algorithm using quotient graphs, ACM Trans. Math. Software, 6, 3, 337-358 (1980) · Zbl 0467.65011
[77] Liu, J. W.H., Modification of the minimum-degree algorithm by multiple elimination, Trans. Math. Softw., 11, 2, 141-153 (1985) · Zbl 0568.65015
[78] Henderson, A., ParaView Guide, A Parallel Visualization Application (2008), Kitware Inc.
[79] Hunter, J. D., Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 3, 90-95 (2007)
[80] Geuzaine, C.; Remacle, J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[81] Remacle, J.-F.; Lambrechts, J.; Seny, B.; Marchandise, E.; Johnen, A.; Geuzaine, C., Blossom-quad: a non-uniform quadrilateral mesh generator using a minimum cost perfect matching algorithm, Internat. J. Numer. Methods Engrg., 89, 9, 1102-1119 (2012) · Zbl 1242.74155
[82] Remacle, J.-F.; Henrotte, F.; Carrier-Baudouin, T.; Béchet, E.; Marchandise, E.; Geuzaine, C.; Mouton, T., A frontal Delaunay quad mesh generator using the L \(\infty\) norm, Internat. J. Numer. Methods Engrg., 94, 5, 494-512 (2013) · Zbl 1352.65618
[83] Karypis, G.; Kumar, V., Parallel multilevel series k-way partitioning scheme for irregular graphs, SIAM Rev., 41, 2, 278-300 (1999) · Zbl 0918.68073
[84] Litonski, J., Plastic flow of a tube under adiabatic torsion, Bull. Acad. Pol. Sci., Ser. Sci. Tech., 25, 1, 7-14 (1977)
[85] Berger-Vergiat, L.; McAuliffe, C.; Waisman, H., Parallel preconditioners for monolithic solution of shear bands, J. Comput. Phys., 304, 359-379 (2016) · Zbl 1349.74317
[86] Kalthoff, J.-F., Modes of dynamic shear failure in solids, Int. J. Fract., 101, 1, 1-31 (2000)
[87] Arriaga, Miguel; McAuliffe, Colin; Waisman, Haim, Onset of shear band localization by a local generalized eigenvalue analysis, Comput. Methods Appl. Mech. Engrg., 289, 179-208 (2015) · Zbl 1423.74166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.