zbMATH — the first resource for mathematics

Variational inequality approach to enforcing the non-negative constraint for advection-diffusion equations. (English) Zbl 1439.35153
Summary: Predictive simulations are crucial for the success of many subsurface applications, and it is highly desirable to obtain accurate non-negative solutions for transport equations in these numerical simulations. To this end, optimization-based methodologies based on quadratic programming (QP) have been shown to be a viable approach to ensuring discrete maximum principles and the non-negative constraint for anisotropic diffusion equations. In this paper, we propose a computational framework based on the variational inequality (VI) which can also be used to enforce important mathematical properties (e.g., maximum principles) and physical constraints (e.g., the non-negative constraint). We demonstrate that this framework is not only applicable to diffusion equations but also to non-symmetric advection-diffusion equations. An attractive feature of the proposed framework is that it works with any weak formulation for the advection-diffusion equations, including single-field formulations, which are computationally attractive. A particular emphasis is placed on the parallel and algorithmic performance of the VI approach across large-scale and heterogeneous problems. It is also shown that QP and VI are equivalent under certain conditions. State-of-the-art QP and VI solvers available from the PETSc library are used on a variety of steady-state 2D and 3D benchmarks, and a comparative study on the scalability between the QP and VI solvers is presented. We then extend the proposed framework to transient problems by simulating the miscible displacement of fluids in a heterogeneous porous medium and illustrate the importance of enforcing maximum principles for these types of coupled problems. Our numerical experiments indicate that VIs are indeed a viable approach for enforcing the maximum principles and the non-negative constraint in a large-scale computing environment. Also provided are Firedrake project files as well as a discussion on the computer implementation to help facilitate readers in understanding the proposed framework.

35J25 Boundary value problems for second-order elliptic equations
35J86 Unilateral problems for linear elliptic equations and variational inequalities with linear elliptic operators
58E35 Variational inequalities (global problems) in infinite-dimensional spaces
65K15 Numerical methods for variational inequalities and related problems
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
Full Text: DOI
[1] EPA, US, Cleaning Up the Nation’s Waste Sites: Markets and Technology Trends, ((2004), US Environmental Protection Agency)
[2] Harp, D. R.; Vesselinov, V. V., Contaminant remediation decision analysis using information gap theory, Stoch. Environ. Res. Risk Assess., 27, 159-168 (2013)
[3] Heikoop, J. M.; Johnson, T. M.; Birdsell, K. H.; Longmire, P.; Hickmott, D. D.; Jacobs, E. P.; Broxton, D. E.; Katzman, D.; Vesselinov, V. V.; Ding, M.; Vanimana, D. T.; Reneaua, S. L.; Goering, T. J.; Glessnerb, J.; Basu, A., Isotopic evidence for reduction of anthropogenic hexavalent chromium in Los Alamos National Laboratory groundwater, Chem. Geol., 373, 1-9 (2014)
[4] Hammond, G. E.; Lichtner, P. C., Field-scale model for the natural attenuation of uranium at the Hanford 300 area using high-performance computing, Water Resour. Res., 46, W09602 (2010)
[5] Genty, A.; Potier, C. Le, Maximum and minimum principles for radionuclide transport calculations in geological radioactive waste repository: comparison between a mixed hybrid finite element method and finite volume element discretizations, Transp. Porous Media, 88, 65-86 (2011)
[6] Ciarlet, P. G.; Raviart, P. A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Methods. Engrg., 2, 17-31 (1973)
[7] Lipnikov, K.; Shashkov, M.; Svyatskiy, D.; Yassilevski, Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227, 492-512 (2007)
[8] Liska, R.; Shashkov, M., Enforcing the discrete maximum principle for linear finite element solutions for elliptic problems, Commun. Comput. Phys., 3, 852-877 (2008)
[9] Gibbs, J. W., Fourier’s series, Nature, 59, 1522, 200 (1898)
[10] Gibbs, J. W., Fourier’s series, Nature, 59, 1539, 606 (1899)
[11] Payette, G. S.; Nakshatrala, K. B.; Reddy, J. N., On the performance of high-order finite elements with respect to maximum principles and the non-negative constraint for diffusion-type equations, Internat. J. Numer. Methods Engrg., 91, 742-771 (2012)
[12] Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K. B., On local and global species conservation errors for nonlinear ecological models and chemical reacting flows, (ASME 2015 International Mechanical Engineering Congress and Exposition (2015), American Society of Mechanical Engineers), pp. V009T12A018-V009T12A018
[13] Huang, W.; Wang, Y., Discrete maximum principle for the weak Galerkin method for anisotropic diffusion problems, Commun. Comput. Phys., 18, 1, 65-90 (2015)
[14] Mudunuru, M. K.; Nakshatrala, K. B., On mesh restrictions to satisfy comparison principles, maximum principles, and the non-negative constraint: Recent developments and new results, Mech. Adv. Mater. Struct. (2016)
[15] Harari, I., Stability of semidiscrete formulations for parabolic problems at small time steps, Comput. Methods Appl. Mech. Engrg., 193, 15, 1491-1516 (2004)
[16] Pal, R. K.; Abedi, R.; Madhukar, A.; Haber, R. B., Adaptive spacetime discontinuous Galerkin method for hyperbolic advection-diffusion with a non-negativity constraint, Internat. J. Numer. Methods Engrg., 105, 963-989 (2016)
[17] Le Potier, C., Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, C. R. Math., 341, 787-792 (2005)
[18] Sheng, Z.; Yuan, G., A new nonlinear finite volume scheme preserving positivity for diffusion equations, J. Comput. Phys., 315, 182-193 (2016)
[19] da Veiga, L. B.; Lipnikov, K.; Manzini, G., The Mimetic Finite Difference Method for Elliptic Problems (2014), Springer
[20] Nakshatrala, K. B.; Valocchi, A. J., Non-negative mixed finite element formulations for a tensorial diffusion equation, J. Comput. Phys., 228, 6726-6752 (2009)
[21] Nagarajan, H.; Nakshatrala, K. B., Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids, Internat. J. Numer. Methods Fluids, 67, 820-847 (2011)
[22] Nakshatrala, K. B.; Mudunuru, M. K.; Valocchi, A. J., A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint, J. Comput. Phys., 253, 278-307 (2013)
[23] Nakshatrala, K. B.; Nagarajan, H.; Shabouei, M., A numerical methodology for enforcing maximum principles and the non-negative constraint for transient diffusion equations, Commun. Comput. Phys., 19, 53-93 (2016)
[24] Mudunuru, M. K.; Nakshatrala, K. B., On enforcing maximum principles and achieving element-wise species balance for advection-diffusion-reaction equations under the finite element method, J. Comput. Phys., 305, 448-493 (2016)
[25] Demmel, J. W., Applied Numerical Linear Algebra (1997), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA
[26] Burdakov, O.; Kapyrin, I.; Vassilevski, Y., Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions, J. Comput. Phys., 231, 3126-3142 (2012)
[27] Chang, J.; Nakshatrala, K. B.; Reddy, J. N., Modification to Darcy-Forchheimer model due to pressure-dependent viscosity: consequences and numerical solutions, J. Porous Media, 20, 263-285 (2017)
[28] Pyzara, Anna; Bylina, Beata; Bylina, Jarosław, The influence of a matrix condition number on iterative methods’ convergence, (Computer Science and Information Systems (FedCSIS), 2011 Federated Conference on (2011), IEEE), 459-464
[29] Chang, J.; Karra, S.; Nakshatrala, K. B., Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies, J. Sci. Comput., 70, 243-271 (2017)
[30] Ulbrich, M., Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces (2011), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA
[31] Signorini, A., Sopra alcune questioni di statica dei sistemi continui, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2, 2, 231-251 (1933)
[32] Signorini, A., Questioni di elasticità non linearizzata e semilinearizzata, Rend. Mat. Appl. (5), 18, 95-139 (1959)
[33] Fichera, G., Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno (1964), Accademia nazionale dei Lincei
[34] Fichera, G., Linear Elliptic Differential Systems and Eigenvalue Problems (1965), Springer
[35] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Vol. 8 (1988), SIAM
[36] Hlavacek, I.; Haslinger, J.; Necas, J.; Lovisek, J., Solution of Variational Inequalities in Mechanics, Vol. 66 (2012), Springer Science and Business Media
[37] Rodrigues, J. F., Obstacle Problems in Mathematical Physics (1987), Elsevier
[38] Han, W.; Reddy, B. D., Plasticity: Mathematical Theory and Numerical Analysis (2012), Springer Science and Business Media
[39] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and their Applications (2000), SIAM Classics in Applied Mathematics: SIAM Classics in Applied Mathematics New York, USA
[40] Chipot, M., Elliptic Equations: An Introductory Course (2009), Birkhäuser: Birkhäuser Basel, Switzerland
[41] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (2001), Springer: Springer New York, USA
[42] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2010), Springer Science and Business Media
[43] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982)
[44] Turner, D. Z.; Nakshatrala, K. B.; Martinez, M. J.; Notz, P. K., Modeling subsurface water resource systems involving heterogeneous porous media using the variational multiscale formulation, J. Hydrol., 428-429, 1-14 (2011)
[45] Knutson, C. E.; Werth, C. J.; Valocchi, A. J., Pore-scale simulation of biomass growth along the transverse mixing zone of a model two-dimensional porous medium, Water Resour. Res., 41, 7 (2005)
[46] von der Schulenburg, D. A.; Pintelon, T. R.R.; Picioreanu, C.; Van Loosdrecht, M. C.M.; Johns, M. L., Three-dimensional simulations of biofilm growth in porous media, AIChE J., 55, 2, 494-504 (2009)
[47] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002)
[48] Riviére, B.; Wheeler, M., Discontinuous Galerkin methods for and transport in porous media, Communications in Numerical Methods in Engineering, 18, 63-68 (2002)
[49] Cockburn, B., Discontinuous Galerkin methods, SIAM J. Numer. Anal., 83, 11, 731-754 (2003)
[50] Li, J.; Riviére, B., Numerical solutions of the incompressible miscible displacement equations in heterogeneous media, Comput. Methods Appl. Mech. Engrg., 292, 107-121 (2015)
[51] Li, J.; Riviére, B., High order discontinuous Galerkin method for simulating miscible flooding in porous media, Comput. Geosci., 19, 1251-1268 (2015)
[52] Li, J.; Riviére, B., Numerical modeling of miscible viscous fingering instabilities by high-order methods, Transp. Porous Media, 113, 607628 (2016)
[53] Shahbazi, K., Short note: An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys., 205, 2, 401-407 (2005)
[54] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer-Verlag: Springer-Verlag New York, USA
[55] Lions, J. L.; Stampacchia, G., Variational inequalities, Comm. Pure Appl. Math., 20, 3, 493-519 (1967)
[56] Glowinski, R., Numerical Methods for Nonlinear Variational Problems (1984), Springer-Verlag: Springer-Verlag Berlin, Germany
[57] Duvaut, G.; Lions, J. L., Inequalities in Mechanics and Physics (1976), Springer-Verlag: Springer-Verlag Berlin, Germany
[58] Facchinei, F.; Pang, J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I (2003), Springer-Verlag: Springer-Verlag New York, USA
[59] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge University Press: Cambridge University Press Cambridge, UK
[60] Nagurney, A., (Variational Inequalities, Technical Report (2002), Isenberg School of Management, University of Massachusetts Amherst), URL https://supernet.isenberg.umass.edu/Austria_Lectures/fvisli.pdf
[61] Nagurney, A.; Zhang, D., Projected Dynamical Systems and Variational Inequalities with Applications (2012), Springer Science and Business Media
[62] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., (PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.7 (2016), Argonne National Laboratory)
[63] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202
[64] Munson, T.; Sarich, J.; Wild, S.; Benson, S.; McInnes, L. C., Toolkit for Advanced Optimization (TAO) Users Manual, ((2014))
[66] De Luca, T.; Facchinei, F.; Kanzow, C., A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Program., 75, 407-439 (1996)
[67] Munson, T. S.; Facchinei, F.; Ferris, M. C.; Fischer, A.; Kanzow, C., The semismooth algorithm for large scale complementarity problems, INFORMS J. Comput., 13, 294-311 (2001)
[68] Fischer, A., A special Newton-type optimization method, Optimization, 24, 269-284 (1992)
[69] Mifflin, R., Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim., 15, 957-972 (1977)
[70] Qi, L., Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 18, 227-244 (1993)
[71] Qi, L.; Sun, J., A nonsmooth version of Newton’s method, Math. Program., 58, 353-368 (1993)
[72] Armijo, L., Minimization of functions having Lipschitz-continuous first partial derivatives, Pacific J. Math., 16, 1-3 (1966)
[73] Benson, S.; Munson, T. S., Flexible complementarity solvers for large-scale applications, Pacific J. Math., 21, 155-168 (2006)
[74] Lin, C. J.; Moré, J., Newton’s method for large bound-constrained optimization problems, SIAM J. Optim., 9, 1100-1127 (1999)
[75] Dalcin, L. D.; Paz, R. R.; Kler, P. A.; Cosimo, A., Parallel distributed computing using Python, Adv. Water Resour., 34, 9, 1124-1139 (2011)
[76] Lester, D. R.; Metcalfe, G.; Trefry, M. G., Is chaotic advection inherent to porous media flow?, Phys. Rev. Lett., 111, 17, 174101 (2013)
[77] Zhao, X. H.; Kwek, K. H.; Li, J. B.; Huang, K. L., Chaotic and resonant streamlines in the ABC flow, SIAM J. Appl. Math., 53, 71-77 (1993)
[78] Dombre, T.; Frisch, U.; Greene, J. M.; Hénon, M.; Mehr, A.; Soward, A. M., Chaotic streamlines in the ABC flows, Journal of Fluid Mechanics, 167, 353-391 (1986)
[79] Stalkup, F. I., Miscible displacement (1983), Society of Petroleum Engineers
[80] Chen, C. Y.; Meiburg, E., Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case, Journal of Fluid Mechanics, 371, 233-268 (1998)
[81] Chen, C. Y.; Meiburg, E., Miscible porous media displacements in the quarter five-spot configuration. Part 2. Effect of heterogeneities, Journal of Fluid Mechanics, 371, 269-299 (1998)
[82] Grossmann, C.; Roos, H. G.; Stynes, M., Numerical Treatment of Partial Differential Equations (2007), Springer: Springer Berlin, Germany
[83] Rathgeber, F.; Ham, D. A.; Mitchell, L.; Lange, M.; Luporini, F.; McRae, A. T.T.; Bercea, G. T.; Markall, G. R.; Kelly, P. H.J., Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Softw., 43, 24:1-24:27 (2016)
[84] Luporini, F.; Ham, D. A.; Kelly, P. H.J., An algorithm for the optimization of finite element integration loops, ACM Trans. Math. Softw., 44, 3:1-3:26 (2017)
[85] Luporini, F.; Varbanescu, A. L.; Rathgeber, F.; Bercea, G. T.; Ramanujam, J.; Ham, D. A.; Kelly, P. H.J., Cross-loop optimization of arithmetic intensity for finite element local assembly, ACM Trans. Archit. Code Optim., 11, 4, 57:1-57:25 (2015)
[86] Logg, A.; Mardal, K. A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (2012), Springer Science and Business Media
[87] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The fenics project version 1.5, Arch. Numer. Softw., 3, 100, 9-23 (2015)
[88] Alnæs, M. S.; Logg, A.; Ølgaard, K. B.; Rognes, M. E.; Wells, G. N., Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Softw., 40, 2, 9 (2014)
[89] Rathgeber, F.; Markall, G. R.; Mitchell, L.; Loriant, N.; Ham, D. A.; Bertolli, C.; Kelly, P. H.J., PyOP2: A high-level framework for performance-portable simulations on unstructured meshes, (High Performance Computing, Networking Storage and Analysis, SC Companion (2012), IEEE Computer Society: IEEE Computer Society Los Alamitos, CA, USA), 1116-1123
[90] Markall, G. R.; Rathgeber, F.; Mitchell, L.; Loriant, N.; Bertolli, C.; Ham, D. A.; Kelly, P. H.J., Performance-portable finite element assembly using PyOP2 and FEniCS, (Kunkel, Julian Martin; Ludwig, Thomas; Meuer, Hans Werner, 28th International Supercomputing Conference, ISC, Proceedings. 28th International Supercomputing Conference, ISC, Proceedings, Lecture Notes in Computer Science, vol. 7905 (2013), Springer), 279-289
[91] Geuzaine, C.; Remacle, J. F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 1309-1331 (2009)
[92] Hendrickson, B.; Leland, R., A multilevel algorithm for partitioning graphs, (Supercomputing ’95: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (CDROM) (1995), ACM Press: ACM Press New York), 28, http://doi.acm.org/10.1145/224170.224228
[93] Homolya, M.; Ham, D. A., A parallel edge orientation algorithm for quadrilateral meshes, SIAM J. Sci. Comput., 38, S48-S61 (2016)
[94] McRae, A. T.T.; Bercea, G. T.; Mitchell, L.; Ham, D. A.; Cotter, C. J., Automated generation and symbolic manipulation of tensor product finite elements, SIAM J. Sci. Comput., 38, S25-S47 (2016)
[95] Raviart, P. A.; Thomas, J. M., A mixed finite element method for 2-nd order elliptic problems, (Mathematical Aspects of Finite Element Methods (1977), Springer), 292-315
[96] Rognes, M. E.; Kirby, R. C.; Logg, A., Efficient assembly of H(div) and H(curl) conforming finite elements, SIAM J. Sci. Comput., 31, 6, 4130-4151 (2009)
[97] Bercea, G. T.; McRae, A. T.T.; Ham, D. A.; Mitchell, L.; Rathgeber, F.; Nardi, L.; Luporini, F.; Kelly, P. H.J., A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in firedrake, Geosci. Model Dev., 9, 3803-3815 (2016)
[98] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005)
[99] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite elements and fast iterative solvers, J. Fluid Mech., 557, 1, 474-475 (2006)
[100] Murphy, M. F.; Golub, G. H.; Wathen, A. J., A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21, 6, 1969-1972 (2000)
[101] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM Journal on Numerical Analysis, 47, 2, 1319-1365 (2009)
[102] Sala, M.; Hu, J. J.; Tuminaro, R. S., ML3.1 Smoothed Aggregation User’s Guide, ((2004))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.