zbMATH — the first resource for mathematics

Stabilized material point methods for coupled large deformation and fluid flow in porous materials. (English) Zbl 1439.76163
Summary: The material point method (MPM) has been increasingly used for the simulation of large-deformation processes in fluid-infiltrated porous materials. For undrained poromechanical problems, however, standard MPMs are numerically unstable because they use low-order interpolation functions that violate the inf-sup stability condition. In this work, we develop stabilized MPM formulations for dynamic and quasi-static poromechanics that permit the use of standard low-order interpolation functions notwithstanding the drainage condition. For the stabilization of both dynamic and quasi-static formulations, we utilize the polynomial pressure projection method whereby a stabilization term is augmented to the balance of mass. The stabilization term can be implemented with both the original and generalized interpolation material point (GIMP) methods, and it is compatible with existing time-integration methods. Here we use fully-implicit methods for both dynamic and quasi-static poromechanical problems, aided by a block-preconditioned Newton-Krylov solver. The stabilized MPMs are verified and investigated through several numerical examples under dynamic and quasi-static conditions. Results show that the proposed MPM formulations allow standard low-order interpolation functions to be used for both the solid displacement and pore pressure fields of poromechanical formulations, from undrained to drained conditions, and from dynamic to quasi-static conditions.

76S05 Flows in porous media; filtration; seepage
p4est; Trilinos
Full Text: DOI
[1] Orlandini, S.; Moretti, G.; Albertson, J. D., Evidence of an emerging levee failure mechanism causing disastrous floods in Italy, Water Resour. Res., 51, 10, 7995-8011 (2015)
[2] Iverson, R.; George, D.; Allstadt, K.; Reid, M.; Collins, B.; Vallance, J.; Schilling, S.; Godt, J.; Cannon, C.; Magirl, C.; Baum, R.; Coe, J.; Schulz, W.; Bower, J., Landslide mobility and hazards: implications of the 2014 oso disaster, Earth Planet. Sci. Lett., 412, 197-208 (2015)
[3] Borja, R. I.; Choo, J.; White, J. A., Rock moisture dynamics, preferential flow, and the stability of hillside slopes, (Multi-Hazard Approaches to Civil Infrastructure Engineering (2016)), 443-464
[4] Dey, R.; Hawlader, B. C.; Phillips, R.; Soga, K., Numerical modelling of submarine landslides with sensitive clay layers, Géotechnique, 66, 6, 454-468 (2016)
[5] Baer, G.; Magen, Y.; Nof, R. N.; Raz, E.; Lyakhovsky, V.; Shalev, E., Insar measurements and viscoelastic modeling of sinkhole precursory subsidence: Implications for sinkhole formation, early warning, and sediment properties, J. Geophys. Res.: Earth Surf., 123, 4, 678-693 (2018)
[6] Franceschini, G.; Bigoni, D.; Regitnig, P.; Holzapfel, G., Brain tissue deforms similarly to filled elastomers and follows consolidation theory, J. Mech. Phys. Solids, 54, 12, 2592-2620 (2006) · Zbl 1162.74303
[7] Bertrand, T.; Peixinho, J.; Mukhopadhyay, S.; MacMinn, C. W., Dynamics of swelling and drying in a spherical gel, Phys. Rev. Appl., 6, 064010 (2016)
[8] Dortdivanlioglu, B.; Linder, C., Diffusion-driven swelling-induced instabilities of hydrogels, J. Mech. Phys. Solids, 125, 38-52 (2019)
[9] Borja, R. I.; Tamagnini, C., Cam-Clay plasticity, Part III: Extension of the infinitesimal model to include finite strains, Comput. Methods Appl. Mech. Engrg., 155, 1-2, 73-95 (1998) · Zbl 0959.74010
[10] Borja, R. I.; Tamagnini, C.; Alarcon, E., Elastoplastic consolidation at finite strain Part 2: Finite element implementation and numerical examples, Comput. Methods Appl. Mech. Engrg., 159, 1-2, 103-122 (1998) · Zbl 0941.74057
[11] Sanavia, L.; Schrefler, B. A.; Steinmann, P., A formulation for an unsaturated porous medium undergoing large inelastic strains, Comput. Mech., 28, 2, 137-151 (2002) · Zbl 1146.74319
[12] Li, C.; Borja, R. I.; Regueiro, R. A., Dynamics of porous media at finite strain, Comput. Methods Appl. Mech. Engrg., 193, 36-38, 3837-3870 (2004) · Zbl 1068.74019
[13] Uzuoka, R.; Borja, R. I., Dynamics of unsaturated poroelastic solids at finite strain, Int. J. Numer. Anal. Methods Geomech., 36, 13, 1535-1573 (2012)
[14] Borja, R. I.; Choo, J., Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure, Comput. Methods Appl. Mech. Engrg., 309, 653-679 (2016)
[15] Krischok, A.; Linder, C., On the enhancement of low-order mixed finite element methods for the large deformation analysis of diffusion in solids, Internat. J. Numer. Methods Engrg., 106, 4, 278-297 (2016) · Zbl 1352.74384
[16] Na, S.; Sun, W., Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range, Comput. Methods Appl. Mech. Engrg., 318, 667-700 (2017)
[17] Choo, J., Large deformation poromechanics with local mass conservation: An enriched Galerkin finite element framework, Internat. J. Numer. Methods Engrg., 116, 66-90 (2018)
[18] Dortdivanlioglu, B.; Krischok, A.; Beirão da veiga, L.; Linder, C., Mixed isogeometric analysis of strongly coupled diffusion in porous materials, Internat. J. Numer. Methods Engrg., 114, 1, 28-46 (2018)
[19] Chen, J.-S.; Hillman, M.; Chi, S.-W., Meshfree methods: Progress made after 20 years, J. Eng. Mech., 143, 4, 04017001 (2017)
[20] Sulsky, D.; Chen, Z.; Schreyer, H., A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 1, 179-196 (1994) · Zbl 0851.73078
[21] Sulsky, D.; Zhou, S.-J.; Schreyer, H. L., Application of a particle-in-cell method to solid mechanics, Comput. Phys. Comm., 87, 1, 236-252 (1995) · Zbl 0918.73334
[22] Brackbill, J.; Ruppel, H., Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J. Comput. Phys., 65, 2, 314-343 (1986) · Zbl 0592.76090
[23] Harlow, F. H., The particle-in-cell computing method for fluid dynamics, Methods Comput. Phys., 3, 319-343 (1964)
[24] Zhang, H.; Wang, K.; Chen, Z., Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies, Comput. Methods Appl. Mech. Engrg., 198, 17, 1456-1472 (2009) · Zbl 1227.74024
[25] Mackenzie-Helnwein, P.; Arduino, P.; Shin, W.; Moore, J. A.; Miller, G. R., Modeling strategies for multiphase drag interactions using the material point method, Internat. J. Numer. Methods Engrg., 83, 3, 295-322 (2010) · Zbl 1193.74168
[26] Abe, K.; Soga, K.; Bandara, S., Material point method for coupled hydromechanical problems, J. Geotech. Geoenviron. Eng., 140, 3, 04013033 (2014)
[27] Bandara, S.; Soga, K., Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199-214 (2015)
[28] Yerro, A.; Alonso, E.; Pinyol, N., The material point method for unsaturated soils, Géotechnique, 65, 3, 201-217 (2015)
[29] Bandara, S.; Ferrari, A.; Laloui, L., Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method, Int. J. Numer. Anal. Methods Geomech., 40, 9, 1358-1380 (2016)
[30] Soga, K.; Alonso, E.; Yerro, A.; Kumar, K.; Bandara, S., Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Geotechnique, 66, 3, 248-273 (2016)
[31] Tampubolon, A. P.; Gast, T.; Klár, G.; Fu, C.; Teran, J.; Jiang, C.; Museth, K., Multi-species simulation of porous sand and water mixtures, ACM Trans. Graph., 36, 4, 105:1-105:11 (2017)
[32] Liu, C.; Sun, Q.; Jin, F.; Zhou, G. G., A fully coupled hydro-mechanical material point method for saturated dense granular materials, Powder Technol., 314, 110-120 (2017)
[33] Pinyol, N. M.; Alvarado, M.; Alonso, E. E.; Zabala, F., Thermal effects in landslide mobility, Géotechnique, 68, 6, 528-545 (2018)
[34] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, ESAIM: Math. Modelling Numer. Anal. - Modél. Math. Anal. Numér., 8, R2, 129-151 (1974) · Zbl 0338.90047
[35] Brezzi, F.; Bathe, K.-J., A discourse on the stability conditions for mixed finite element formulations, Comput. Methods Appl. Mech. Engrg., 82, 1, 27-57 (1990) · Zbl 0736.73062
[36] Bathe, K.-J., The inf-sup condition and its evaluation for mixed finite element methods, Comput. Struct., 79, 2, 243-252 (2001)
[37] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. & Fluids, 1, 1, 73-100 (1973) · Zbl 0328.76020
[38] Jassim, I.; Stolle, D.; Vermeer, P., Two-phase dynamic analysis by material point method, Int. J. Numer. Anal. Methods Geomech., 37, 15, 2502-2522 (2013)
[39] Pastor, M.; Li, T.; Liu, X.; Zienkiewicz, O.; Quecedo, M., A fractional step algorithm allowing equal order of interpolation for coupled analysis of saturated soil problems, Mech. Cohes.-Frict. Mater., 5, 7, 511-534 (2000)
[40] Huang, M.; Wu, S.; Zienkiewicz, O., Incompressible or nearly incompressible soil dynamic behaviour—a new staggered algorithm to circumvent restrictions of mixed formulation, Soil Dyn. Earthq. Eng., 21, 2, 169-179 (2001)
[41] Li, X.; Han, X.; Pastor, M., An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics, Comput. Methods Appl. Mech. Eng., 192, 35 (2003) · Zbl 1054.74732
[42] Bochev, P. B.; Dohrmann, C. R.; Gunzburger, M. D., Stabilization of low-order mixed finite elements for the stokes equations, SIAM J. Numer. Anal., 44, 1, 82-101 (2006) · Zbl 1145.76015
[43] White, J. A.; Borja, R. I., Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Engrg., 197, 49-50, 4353-4366 (2008) · Zbl 1194.74480
[44] Preisig, M.; Prévost, J. H., Stabilization procedures in coupled poromechanics problems: A critical assessment, Int. J. Numer. Anal. Methods Geomech., 35, 3, 1207-1225 (2011)
[45] Sun, W.; Ostien, J. T.; Salinger, A., A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, Int. J. Numer. Anal. Methods Geomech., 37, 16, 2755-2788 (2013)
[46] Choo, J.; Borja, R. I., Stabilized mixed finite elements for deformable porous media with double porosity, Comput. Methods Appl. Mech. Engrg., 293, 131-154 (2015) · Zbl 1423.74265
[47] Sun, W., A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 11, 798-839 (2015) · Zbl 1352.76116
[48] Choo, J., Stabilized mixed continuous/enriched Galerkin formulations for locally mass conservative poromechanics, Comput. Methods Appl. Mech. Engrg., 357, 112568 (2019)
[49] Monforte, L.; Navas, P.; Carbonell, J. M.; Arroyo, M.; Gens, A., Low-order stabilized finite element for the full biot formulation in soil mechanics at finite strain, Int. J. Numer. Anal. Methods Geomech., 43, 7, 1488-1515 (2019)
[50] Bowen, R. M., Compressible porous media models by use of the theory of mixtures, Internat. J. Engrg. Sci., 20, 6, 697-735 (1982) · Zbl 0484.76102
[51] Borja, R. I.; Alarcon, E., A mathematical framework for finite strain elastoplastic consolidation Part 1: Balance laws, variational formulation, and linearization, Comput. Methods Appl. Mech. Engrg., 122, 145-171 (1995) · Zbl 0852.73051
[52] Zienkiewicz, O.; Shiomi, T., Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution, Int. J. Numer. Anal. Methods Geomech., 8, 1, 71-96 (1984) · Zbl 0526.73099
[53] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer Berlin Heidelberg · Zbl 0934.74003
[54] Gibson, R. E.; England, G. L.; Hussey, M. J.L., The theory of one-dimensional consolidation of saturated clays, Géotechnique, 17, 3, 261-273 (1967)
[55] Gibson, R. E.; Schiffman, R. L.; Cargill, K. W., The theory of one-dimensional consolidation of saturated clays. II. finite nonlinear consolidation of thick homogeneous layers, Can. Geotech. J., 18, 2, 280-293 (1981)
[56] Burgess, D.; Sulsky, D.; Brackbill, J., Mass matrix formulation of the flip particle-in-cell method, J. Comput. Phys., 103, 1, 1-15 (1992) · Zbl 0761.73117
[57] Charlton, T.; Coombs, W.; Augarde, C., iGIMP: An implicit generalised interpolation material point method for large deformations, Comput. Struct., 190, 108-125 (2017)
[58] Sinaie, S.; Nguyen, V. P.; Nguyen, C. T.; Bordas, S., Programming the material point method in julia, Adv. Eng. Softw., 105, 17-29 (2017)
[59] Zhang, X.; Chen, Z.; Liu, Y., The Material Point Method (2017), Academic Press
[60] Bardenhagen, S.; Kober, E., The generalized interpolation material point method, CMES Comput. Model. Eng. Sci., 5, 6, 477-496 (2004)
[61] Borja, R. I., Plasticity Modeling and Computation (2013), Springer Berlin Heidelberg · Zbl 1279.74003
[62] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[63] Stomakhin, A.; Schroeder, C.; Chai, L.; Teran, J.; Selle, A., A material point method for snow simulation, ACM Trans. Graph., 32, 4, 102:1-102:10 (2013) · Zbl 1305.68280
[64] Nairn, J. A., Numerical simulation of orthogonal cutting using the material point method, Eng. Fract. Mech., 149, 262-275 (2015)
[65] Hammerquist, C. C.; Nairn, J. A., A new method for material point method particle updates that reduces noise and enhances stability, Comput. Methods Appl. Mech. Engrg., 318, 724-738 (2017)
[66] Jiang, C.; Schroeder, C.; Teran, J., An angular momentum conserving affine-particle-in-cell method, J. Comput. Phys., 338, 137-164 (2017) · Zbl 1415.74052
[67] Liang, W.; Zhao, J., Multiscale modeling of large deformation in geomechanics, Int. J. Numer. Anal. Methods Geomech., 43, 5, 1080-1114 (2019)
[68] Vermeer, P. A.; Verruijt, A., An accuracy condition for consolidation by finite elements, Int. J. Numer. Anal. Methods Geomech., 5, 1, 1-14 (1981) · Zbl 0456.73060
[69] Murad, M. A.; Loula, A. F., On stability and convergence of finite element approximations of Biot’s consolidation problem, Internat. J. Numer. Methods Engrg., 667, 4, 645-667 (1994) · Zbl 0791.76047
[70] de Pouplana, I.; Oñate, E., A FIC-based stabilized mixed finite element method with equal order interpolation for solid-pore fluid interaction problems, Int. J. Numer. Anal. Methods Geomech., 41, 1, 110-134 (2017)
[71] Coombs, W. M.; Charlton, T. J.; Cortis, M.; Augarde, C. E., Overcoming volumetric locking in material point methods, Comput. Methods Appl. Mech. Engrg., 333, 1-21 (2018)
[72] Alzetta, G.; Arndt, D.; Bangerth, W.; Boddu, V.; Brands, B.; Davydov, D.; Gassmoeller, R.; Heister, T.; Heltai, L.; Kormann, K.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The library, version 9.0, J. Numer. Math., 26, 4, 173-183 (2018) · Zbl 1410.65363
[73] Burstedde, C.; Wilcox, L. C.; Ghattas, O., P4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[74] Heroux, M. A.; Willenbring, J. M., A new overview of the Trilinos project, Sci. Program., 20, 2, 83-88 (2012)
[75] White, J. A.; Borja, R. I., Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647-659 (2011) · Zbl 1367.76034
[76] Choo, J.; White, J. A.; Borja, R. I., Hydromechanical modeling of unsaturated flow in double porosity media, Int. J. Geomech., 16, 6, D4016002 (2016)
[77] Choo, J.; Sun, W., Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling, Comput. Methods Appl. Mech. Engrg., 335, 347-349 (2018)
[78] Choo, J.; Lee, S., Enriched Galerkin finite elements for coupled poromechanics with local mass conservation, Comput. Methods Appl. Mech. Engrg., 341, 311-332 (2018)
[79] Yoon, H. C.; Kim, J., Spatial stability for the monolithic and sequential methods with various space discretizations in poroelasticity, Internat. J. Numer. Methods Engrg., 114, 7, 694-718 (2018)
[80] Bisht, V.; Salgado, R., Local transmitting boundaries for the generalized interpolation material point method, Internat. J. Numer. Methods Engrg., 114, 11, 1228-1244 (2018)
[81] Sulsky, D.; Kaul, A., Implicit dynamics in the material-point method, Comput. Methods Appl. Mech. Engrg., 193, 12, 1137-1170 (2004) · Zbl 1060.74674
[82] Wang, B.; Vardon, P. J.; Hicks, M. A.; Chen, Z., Development of an implicit material point method for geotechnical applications, Comput. Geotech., 71, 159-167 (2016)
[83] Fei, F.; Choo, J., A phase-field method for modeling cracks with frictional contact, Internat. J. Numer. Methods Engrg., 121, 4, 740-762 (2020)
[84] Zhang, Q.; Choo, J.; Borja, R. I., On the preferential flow patterns induced by transverse isotropy and non-darcy flow in double porosity media, Comput. Methods Appl. Mech. Engrg., 353, 570-592 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.