×

zbMATH — the first resource for mathematics

A heuristic representation learning based on evidential memberships: case study of UCI-SPECTF. (English) Zbl 1433.68341
Summary: The diagnosed features (samples) with multiple attributes of medical images always demand experts to reveal insight. Up to today, machine learning often cannot be a helpful expert. The reason lies in lacking evidential granules carrying knowledge and evidence for inferential learning. The shortage slows down representation learning which aims at discovering expressions for featuring concepts. Therefore, this paper proposes evidential memberships carrying preferential relevance to build a heuristic representation learning. Empirically, it solves local features and global representations with maximum coverage under challenges of shallow bury. For illustration, it is implemented on the testing data set of UCI-SPECTF.
MSC:
68T05 Learning and adaptive systems in artificial intelligence
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
68T37 Reasoning under uncertainty in the context of artificial intelligence
92C55 Biomedical imaging and signal processing
Software:
C4.5; UCI-ml
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dua, D.; Graff, C., UCI machine learning repository (2017)
[2] Bengio, Y.; Courville, A.; Vincent, P., Representation learning: a review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell., 35, 8, 1798-1828 (2013)
[3] Michalski, R.; Carbonell, J.; Mitchell, T., Machine learning. An Artificial Intelligence Approach, vol. 2, vol. II (1983)
[4] Ko, Y.-C.; Ting, Y.-Y.; Fujita, H., A visual analytics with evidential inference for big data: case study of chemical vapor deposition in solar company, Granul. Comput., 4, 3, 531-544 (2019)
[5] Deng, T.; Ye, D.; Ma, R.; Fujita, H.; Xiong, L., Low-rank local tangent space embedding for subspace clustering, Inf. Sci., 508, 1-21 (2020)
[6] Zhu, X.; Zhang, S.; Hu, R.; Zhu, Y.; song, j., Local and global structure preservation for robust unsupervised spectral feature selection, IEEE Trans. Knowl. Data Eng., 30, 3, 517-529 (2018)
[7] Wang, D.; Nie, F.; Huang, H., Feature selection via global redundancy minimization, IEEE Trans. Knowl. Data Eng., 27, 10, 2743-2755 (2015)
[8] Baroffio, L.; Canclini, A.; Cesana, M.; Redondi, A.; Tagliasacchi, M.; Tubaro, S., Coding local and global binary visual features extracted from video sequences, IEEE Trans. Image Process., 24, 11, 3546-3560 (2015) · Zbl 1408.94044
[9] Cui, C.; Ngan, K. N., Global propagation of affine invariant features for robust matching, IEEE Trans. Image Process., 22, 7, 2876-2888 (2013)
[10] Astrom, A.; Forchheimer, R.; Eklund, J., Global feature extraction operations for near-sensor image processing, IEEE Trans. Image Process., 5, 1, 102-110 (1996)
[11] Chen, J.; Yang, J., Robust subspace segmentation via low-rank representation, IEEE Trans. Cybern., 44, 8, 1432-1445 (2014)
[12] Zhang, Y.; Jiang, Z.; Davis, L. S., Learning structured low-rank representations for image classification, (2013 IEEE Conference on Computer Vision and Pattern Recognition (2013)), 676-683
[13] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), The MIT Press · Zbl 1373.68009
[14] Ko, Y.-C.; Fujita, H., Evidential probability of signals on a price herd predictions: case study on solar energy companies, Int. J. Approx. Reason., 92, 255-269 (2018) · Zbl 1426.91268
[15] Ko, Y.-C.; Fujita, H., An evidential analytics for buried information in big data samples: case study of semiconductor manufacturing, Inf. Sci., 486, 190-203 (2019)
[16] Sivarajah, U.; Kamal, M. M.; Irani, Z.; Weerakkody, V., Critical analysis of big data challenges and analytical methods, J. Bus. Res., 70, 263-286 (2017)
[17] Cios, K. J.; Liu, N., An algorithm which learns multiple covers via integer linear programming. Part I: the CLILP2 algorithm, 24, 2, 29-50 (1995)
[18] Cios, K. J.; Goodenday, L. S.; Shah, K. K.; Serpen, G., A novel algorithm for classification of SPECT images of a human heart, (Proceedings Ninth IEEE Symposium on Computer-Based Medical Systems (1996)), 1-5
[19] Cios, K. J.; Kurgan, L. A., CLIP4: hybrid inductive machine learning algorithm that generates inequality rules, Soft Computing Data Mining. Soft Computing Data Mining, Inf. Sci., 163, 1, 37-83 (2004)
[20] Kurgan, L. A.; Cios, K. J.; Tadeusiewicz, R.; Ogiela, M.; Goodenday, L. S., Knowledge discovery approach to automated cardiac SPECT diagnosis, Artif. Intell. Med., 23, 2, 149-169 (2001)
[21] Moler, C., Professor SVD (2006)
[22] Jou, C.-C., SVD (2019)
[23] Bach, F. R.; Jordan, M. I., Predictive low-rank decomposition for kernel methods, (Proceedings of the 22nd International Conference on Machine Learning. Proceedings of the 22nd International Conference on Machine Learning, ICML ’05 (2005), ACM: ACM New York, NY, USA), 33-40
[24] Koren, Y.; Bell, R.; Volinsky, C., Matrix factorization techniques for recommender systems, Computer, 42, 8, 30-37 (2009)
[25] Wright, J.; Yang, A. Y.; Ganesh, A.; Sastry, S. S.; Ma, Y., Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2, 210-227 (2009)
[26] Liu, G.; Lin, Z.; Yu, Y., Robust subspace segmentation by low-rank representation, (Proceedings of the 27th International Conference on International Conference on Machine Learning. Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10 (2010), Omnipress: Omnipress USA), 663-670
[27] Ma, Y.; Wright, J.; Yang, A. Y., Wiki Home (2018)
[28] Kim, M.; Zimmermann, T.; DeLine, R.; Begel, A., The emerging role of data scientists on software development teams, (Proceedings of the 38th International Conference on Software Engineering. Proceedings of the 38th International Conference on Software Engineering, ICSE ’16 (2016), ACM: ACM New York, NY, USA), 96-107
[29] Wikipedia, Data science (2018)
[30] Pawlak, Z., Granularity of knowledge, indiscernibility and rough sets, (Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on, vol. 1 (1998)), 106-110
[31] Yao, Y., Rough sets, neighborhood systems and granular computing, (Electrical and Computer Engineering, 1999 IEEE Canadian Conference on, vol. 3 (1999)), 1553-1558
[32] Greco, S.; Matarazzo, B.; Slowinski, R., Rough sets theory for multicriteria decision analysis, Eur. J. Oper. Res., 129, 1, 1-47 (2001) · Zbl 1008.91016
[33] Pawlak, Z., Rough probability, Bull. Pol. Acad. Sci., Math., 32, 9-10, 607-612 (1984) · Zbl 0558.60002
[34] Pawlak, Z., Rough sets, rough relations and rough functions, Fundam. Inform., 27, 2-3, 103-108 (1996) · Zbl 0854.04008
[35] Pawlak, Z., Rough set approach to knowledge-based decision support, Eur. J. Oper. Res., 99, 1, 48-57 (1997) · Zbl 0923.90004
[36] Slowinski, R.; Stefanowski, J., Rough classification in incomplete information systems, Math. Comput. Model., 12, 10-11, 1347-1357 (1989)
[37] Denœux, T.; Zouhal, L. M., Handling possibilistic labels in pattern classification using evidential reasoning, Fuzzy Sets Syst., 122, 3, 409-424 (2001) · Zbl 1063.68635
[38] Greco, S.; Matarazzo, B.; Slowinski, R., Rough approximation by dominance relations, Int. J. Intell. Syst., 17, 2, 153-171 (2002) · Zbl 0997.68135
[39] Slowinski, R.; Greco, S.; Matarazzo, B., Rough sets in decision making, (Meyers, A. R., Encyclopedia of Complexity and Systems Science (2009), Springer New York: Springer New York New York, NY), 7753-7787
[40] Sun, B.; Ma, W.; Li, B.; Li, X., Three-way decisions approach to multiple attribute group decision making with linguistic information-based decision-theoretic rough fuzzy set, Int. J. Approx. Reason., 93, 424-442 (2018) · Zbl 1452.68228
[41] Ferone, A., Feature selection based on composition of rough sets induced by feature granulation, Int. J. Approx. Reason., 101, 276-292 (2018) · Zbl 1448.68415
[42] Yao, Y., Three-way decision and granular computing, Int. J. Approx. Reason., 103, 107-123 (2018) · Zbl 1448.68427
[43] Denoeux, T.; Kanjanatarakul, O.; Sriboonchitta, S., Ek-nnclus: a clustering procedure based on the evidential k-nearest neighbor rule, Knowl.-Based Syst., 88, 57-69 (2015)
[44] Denoeux, T.; Sriboonchitta, S.; Kanjanatarakul, O., Evidential clustering of large dissimilarity data, Knowl.-Based Syst., 106, 179-195 (2016)
[45] Cios, K. J.; Kurgan, Ł. A., Hybrid inductive machine learning: an overview of CLIP algorithms, ((2002), Physica-Verlag HD: Physica-Verlag HD Heidelberg), 276-322 · Zbl 0987.68066
[46] Michalski, Ryszard S., Variable-valued logic and its applications to pattern recognition and machine learning, (Rine, David C., Computer Science and Multiple-Valued Logic (1977), North-Holland), 506-534, chapter 18
[47] Salzberg, S. L., C4.5: programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993, Mach. Learn., 16, 3, 235-240 (1994)
[48] Cios, K. J.; Wedding, D. K.; Liu, N., CLIP3: Cover Learning Using Integer Programming, vol. 26 (1997), MCB UP Ltd
[49] Domeniconi, C.; Yan, B., Nearest neighbor ensemble, (Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 1 (2004)), 228-231
[50] Liu, S.; Yao, J.; Zhou, C.; Motani, M., SURI: feature selection based on unique relevant information for health data, (2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (2018)), 687-692
[51] Denœux, T.; Kanjanatarakul, O.; Sriboonchitta, S., A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning, Int. J. Approx. Reason., 113, 287-302 (2019) · Zbl 07174609
[52] Sung, K.; Poggio, T., Example-based learning for view-based human face detection, IEEE Trans. Pattern Anal. Mach. Intell., 20, 1, 39-51 (1998)
[53] Denœux, T., Decision-making with belief functions: a review, Int. J. Approx. Reason., 109, 87-110 (2019) · Zbl 07119656
[54] Denœux, T., Logistic regression, neural networks and Dempster-Shafer theory: a new perspective, Knowl.-Based Syst., 176, 54-67 (2019)
[55] Camilo, J. A.; Collins, L. M.; Malof, J. M., A large comparison of feature-based approaches for buried target classification in forward-looking ground-penetrating radar, IEEE Trans. Geosci. Remote Sens., 56, 1, 547-558 (2018)
[56] Thompson, B.; Cartmill, J.; Azimi-Sadjadi, M. R.; Schock, S. G., A multichannel canonical correlation analysis feature extraction with application to buried underwater target classification, (The 2006 IEEE International Joint Conference on Neural Network Proceedings (2006)), 4413-4420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.