zbMATH — the first resource for mathematics

PBDW: a non-intrusive reduced basis data assimilation method and its application to an urban dispersion modeling framework. (English) Zbl 07187269
Summary: The challenges of understanding the impacts of air pollution require detailed information on the state of air quality. While many modeling approaches attempt to treat this problem, physically-based deterministic methods are often overlooked due to their costly computational requirements and complicated implementation. In this work we extend a non-intrusive Reduced Basis Data Assimilation method (known as PBDW state estimation) to large pollutant dispersion case studies relying on equations involved in chemical transport models for air quality modeling. This, with the goal of rendering methods based on parameterized partial differential equations (PDE) feasible in air quality modeling applications requiring quasi-real-time approximation and correction of model error in imperfect models. Reduced basis methods (RBM) aim to compute a cheap and accurate approximation of a physical state using approximation spaces made of a suitable sample of solutions to the model. One of the keys of these techniques is the decomposition of the computational work into an expensive one-time offline stage and a low-cost parameter-dependent online stage. Traditional RBMs require modifying the assembly routines of the computational code, an intrusive procedure which may be impossible in cases of operational model codes. We propose a less intrusive reduced order method using data assimilation for measured pollution concentrations, adapted for consideration of the scale and specific application to exterior pollutant dispersion as can be found in urban air quality studies. Common statistical techniques of data assimilation in use in these applications require large historical data sets, or time-consuming iterative methods. The method proposed here avoids both disadvantages. In the case studies presented in this work, the method allows to correct for unmodeled physics and treat cases of unknown parameter values, all while significantly reducing online computational time.

86-XX Geophysics
62-XX Statistics
Full Text: DOI
[1] W. H. Organization, Ambient air pollution: a global assessment of exposure and burden of disease (2016), W. H. Organization, Technical Report
[2] Cohen, A. J.; Brauer, M.; Burnett, R.; Anderson, H. R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope, C. A.; Shin, H.; Straif, K.; Shaddick, G.; Thomas, M.; van Dingenen, R.; van Donkelaar, A.; Vos, T.; Murray, C. J.L.; Forouzanfar, M. H., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet (Lond. Engl.), 389, 10082, 1907-1918 (2017)
[3] Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A., Real-time air quality forecasting, part I: history, techniques, and current status, Atmos. Environ., 60, 632-655 (2012)
[4] Sportisse, B., Fundamentals in Air Pollution (2010), Springer Netherlands: Springer Netherlands Dordrecht
[5] Hu, J.; Zhang, H.; Chen, S.-H.; Wiedinmyer, C.; Vandenberghe, F.; Ying, Q.; Kleeman, M. J., Predicting primary PM \(_{2.5}\) and PM \(_{0.1}\) trace composition for epidemiological studies in California, Environ. Sci. Technol., 48, 9, 4971-4979 (2014)
[6] Deutsch, F.; Mensink, C.; Vankerkom, J.; Janssen, L., Application and validation of a comprehensive model for PM10 and PM2.5 concentrations in Belgium and Europe, Appl. Math. Model., 32, 8, 1501-1510 (2008)
[7] Yuan, C.; Ng, E.; Norford, L. K., Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies, Build. Environ., 71, 245-258 (2014)
[8] Gousseau, P.; Blocken, B.; Stathopoulos, T.; van Heijst, G., CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal, Atmos. Environ., 45, 2, 428-438 (2011)
[9] Wikle, C. K.; Berliner, L. M., A Bayesian tutorial for data assimilation, Phys. D: Nonlinear Phenom., 230, 1-2, 1-16 (2007) · Zbl 1113.62032
[10] Bouttier, F.; Courtier, P., Data assimilation concepts and methods, ECMWF Meteorological Training Course Lecture Series, 14, ECMWF, Reading, UK, 59 (1999)
[11] Kalman, R. E.; others, A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 1, 35-45 (1960)
[12] Roustant, O.; Ginsbourger, D.; Deville, Y., DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization, J. Stat. Softw., 51, 1, 54p (2012)
[13] Nassiopoulos, A.; Bourquin, F., Fast three-dimensional temperature reconstruction, Comput. Methods Appl. Mech. Eng., 199, 49, 3169-3178 (2010) · Zbl 1225.80008
[14] Waeytens, J.; Chatellier, P.; Bourquin, F., Inverse computational fluid dynamics: influence of discretization and model errors on flows in water network including junctions, J. Fluids Eng., 139, 5, Article 051402-051402-10 (2017)
[15] Sandu, A.; Daescu, D. N.; Carmichael, G. R.; Chai, T., Adjoint sensitivity analysis of regional air quality models, J. Comput. Phys., 204, 1, 222-252 (2005) · Zbl 1061.92061
[16] Argyropoulos, C. D.; Elkhalifa, S.; Fthenou, E.; Efthimiou, G. C.; Andronopoulos, S.; Venetsanos, A.; Kovalets, I. V.; Kakosimos, K. E., Source reconstruction of airborne toxics based on acute health effects information, Sci. Rep., 8, 1 (2018)
[17] Hutchinson, M.; Oh, H.; Chen, W.-H., A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors, Inf. Fusion, 36, 130-148 (2017)
[18] Mons, V.; Margheri, L.; Chassaing, J.-C.; Sagaut, P., Data assimilation-based reconstruction of urban pollutant release characteristics, J. Wind Eng. Ind. Aerodyn., 169, 232-250 (2017)
[19] Prud’homme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluids Eng., 124, 1, 70-80 (2002)
[20] Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G., A reduced computational and geometrical framework for inverse problems in hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 7, 741-776 (2013)
[21] Negri, F.; Rozza, G.; Manzoni, A.; Quarteroni, A., Reduced basis method for parametrized elliptic optimal control problems, SIAM J. Sci. Comput., 35, 5, A2316-A2340 (2013) · Zbl 1280.49046
[22] Bader, E.; Karcher, M.; Grepl, M. A.; Veroy, K., Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints, SIAM J. Sci. Comput., 38, 6, A3921-A3946 (2016) · Zbl 1426.49029
[23] Quarteroni, A.; Rozza, G.; Quaini, A., Reduced basis methods for optimal control of advection-diffusion problems, Proceedings of the Advances in Numerical Mathematics (2007), RAS and University of Houston
[24] Dedè, L., Reduced basis method and error estimation for parametrized optimal control problems with control constraints, J. Sci. Comput., 50, 2, 287-305 (2012) · Zbl 1244.65094
[25] Kärcher, M.; Boyaval, S.; Grepl, M. A.; Veroy, K., Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation, Optim. Eng., 19, 3, 663-695 (2018)
[26] Maday, Y.; Patera, A. T.; Penn, J. D.; Yano, M., A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, Int. J. Numer. Meth. Eng., 102, 5, 933-965 (2015) · Zbl 1352.65529
[27] Maday, Y.; Patera, A.; Penn, J.; Yano, M., PBDW state estimation: noisy observations; configuration-adaptive background spaces; physical interpretations., Proceedings SMAI CANUM 2014, Carry-le-Rouet, France, in ESAIM: Proceedings and Surveys (2014)
[28] Maday, Y.; Mula, O.; Patera, A. T.; Yano, M., The generalized empirical interpolation method: stability theory on Hilbert spaces with an application to the Stokes equation, Comput. Methods Appl. Mech. Eng., 287, 310-334 (2015) · Zbl 1423.76346
[29] Maday, Y.; Mula, O., A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, Analysis and Numerics of Partial Differential Equations, 221-235 (2013), Springer · Zbl 1267.62013
[30] Blocken, B.; Stathopoulos, T.; Carmeliet, J.; Hensen, J. L.M., Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview, J. Build. Perform. Simul., 4, 2, 157-184 (2011)
[31] Archambeau, F.; Mehitoua, N.; Sakiz, M., Code Saturne: a finite volume code for the computation of turbulent incompressible flows Int, J. Finite Vol. Electron. ed.: (2004)
[32] Kim, H. G.; Patel, V. C., Test of turbulence models for wind flow over terrain with separation and recirculation, Bound.-Layer Meteorol., 94, 1, 5-21 (2000)
[33] Argyropoulos, C.; Markatos, N., Recent advances on the numerical modelling of turbulent flows, Appl. Math. Model., 39, 2, 693-732 (2015) · Zbl 1432.76117
[34] Efthimiou, G. C.; Kovalets, I. V.; Argyropoulos, C. D.; Venetsanos, A.; Andronopoulos, S.; Kakosimos, K. E., Evaluation of an inverse modelling methodology for the prediction of a stationary point pollutant source in complex urban environments, Build. Environ., 143, 107-119 (2018)
[35] Fick, L.; Maday, Y.; Patera, A. T.; Taddei, T., A stabilized POD model for turbulent flows over a range of Reynolds numbers: Optimal parameter sampling and constrained projection, J. Comput. Phys., 371, 214-243 (2018) · Zbl 1415.76387
[36] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-4, 251-266 (2012) · Zbl 1266.68090
[37] Hughes, T. J.; Brooks, A., A multidimensional upwind scheme with no crosswind diffusion, Finite Elem. Methods Convect. Domin. Flows, 34, 19-35 (1979) · Zbl 0423.76067
[38] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 1, 199-259 (1982) · Zbl 0497.76041
[39] Kolmogoroff, A., Uber die beste Annaherung von Funktionen einer gegebenen Funktionenklasse, Ann. Math., 37, 107-110 (1936) · Zbl 0013.34903
[40] Cohen, A.; Devore, R., Kolmogorov widths under holomorphic mappings, IMA J. Numer. Anal., 36, 1, 1-12 (2016) · Zbl 1336.41010
[41] Binev, P.; Cohen, A.; Dahmen, W.; DeVore, R.; Petrova, G.; Wojtaszczyk, P., Convergence rates for Greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43, 3, 1457-1472 (2011) · Zbl 1229.65193
[42] Taddei, T., Model order reduction methods for data assimilation; state estimation and structural health monitoring, (Ph.D. thesis) (2016), Massachusetts Institute of Technology
[44] Schatzmann, M.; Britter, R., Quality assurance and improvement of micro-scale meteorological models, Int. J. Environ. Pollut., 44, 1/2/3/4, 139 (2011)
[45] Mallet, V.; Tilloy, A.; Poulet, D.; Girard, S.; Brocheton, F., Meta-modeling of ADMS-Urban by dimension reduction and emulation, Atmos. Environ., 184, 37-46 (2018)
[46] Noth, E. M.; Hammond, S. K.; Biging, G. S.; Tager, I. B., A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA, Atmos. Environ., 45, 14, 2394-2403 (2011)
[47] Berchet, A.; Zink, K.; Muller, C.; Oettl, D.; Brunner, J.; Emmenegger, L.; Brunner, D., A cost-effective method for simulating city-wide air flow and pollutant dispersion at building resolving scale, Atmos. Environ., 158, 181-196 (2017)
[48] Hammond, J. K., Reduced basis methods for urban air quality modeling, (Ph.D. thesis) (2017), Université Paris Est
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.