zbMATH — the first resource for mathematics

Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation. (English) Zbl 1447.65150
The purpose is to investigate the well-posedness of a boundary problem related to the Poisson-Boltzmann equation expressed as: \(-\nabla.(\epsilon\nabla u)+k^2\sinh(u+w)=l\), in \(\Omega _1\cup\Omega_2\), with \([u]_\Gamma=0\), \([\frac{\partial u}{\partial n}]_{\Gamma}=0\), \(\Gamma\) being the boundary of \(\Omega _1\) which is an interior domain of \(\Omega\), \(\Omega\subset R^d\), \(d=2,3\), \(\Omega _2:=\Omega\backslash(\Omega_1\cup\Gamma)\) and \(u=0\) on \(\partial\Omega\). The bounded domain \(\Omega\) is assumed to have a Lipschitz boundary as well as its subdomain \(\Omega_1\), the coefficients \(\epsilon,k\in L^{\infty}(\Omega)\), \(\epsilon_{\max}\geq\epsilon\geq\epsilon_{\min}>0\), \(w\) is a measurable function and \(l\in L^2(\Omega)\). The paper considers the cases: \(k(x)\equiv 0\) in \(\Omega _1\), \(k_{\max}\geq k(x)\geq k_{\min}>0\) in \(\Omega_2\), \(w\in L^{\infty}(\Omega _2)\) only, that seem to be the most interesting in practice. The variational form of the problem is considered. One defines the weak solution, the corresponding functional and formulates the variational problem. The existence of a unique minimizer to this variational problem is proved. The next section starts with a recall of some results from the duality theory, Fenchel conjugates, error measures, obtains a special error identity and estimations and proves an approximation result. The rest of the paper is devoted to some numerical results where the performances are extensively discussed. Error estimations for variational problems and error identities are to be found mostly in earlier papers of the third author, S. I. Repin.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49M29 Numerical methods involving duality
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J20 Variational methods for second-order elliptic equations
Full Text: DOI
[1] D. Braess and J. Schöberl, Equilibrated residual error estimator for Maxwell’s equations, RICAM report 2006-19, Austrian Academy of Sciences, 2006.
[2] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. · Zbl 1220.46002
[3] H. Brézis and F. E. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 3, A113-A115.
[4] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195-1253. · Zbl 1350.65119
[5] L. Chen, M. J. Holst and J. Xu, The finite element approximation of the nonlinear Poisson-Boltzmann equation, SIAM J. Numer. Anal. 45 (2007), no. 6, 2298-2320. · Zbl 1152.65478
[6] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. Wes Bethel, D. Camp, O. Rübel, M. Durant, J. M. Favre and P. Navrátil, VisIt: An end-user tool for visualizing and analyzing very large data, High Performance Visualization-Enabling Extreme-Scale Scientific Insight, CRC Press, Boca Raton (2012), 357-372.
[7] C. Dobrzynski, MMG3D: User guide, Technical Report RT-0422, INRIA, 2012.
[8] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
[9] M. Feischl, D. Praetorius and K. G. van der Zee, An abstract analysis of optimal goal-oriented adaptivity, SIAM J. Numer. Anal. 54 (2016), no. 3, 1423-1448. · Zbl 1382.65392
[10] F. Fogolari, A. Brigo and H. Molinari, The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology, J. Mol. Recognit. 15 (2002), 377-392.
[11] F. Fogolari, P. Zuccato, G. Esposito and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation, Biophys. J. 76 (1999), 1-16.
[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics Math., Springer, Berlin, 2001. · Zbl 1042.35002
[13] F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), no. 3-4, 251-265. · Zbl 1266.68090
[14] M. Holst, J. A. McCammon, Z. Yu, Y. C. Zhou and Y. Zhu, Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, Commun. Comput. Phys. 11 (2012), no. 1, 179-214. · Zbl 1373.82077
[15] B. Kawohl and M. Lucia, Best constants in some exponential Sobolev inequalities, Indiana Univ. Math. J. 57 (2008), no. 4, 1907-1927. · Zbl 1170.46033
[16] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Class. Appl. Math. 31, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2000. · Zbl 0988.49003
[17] P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation. Error Control and a Posteriori Estimates, Stud. Math. Appl. 33, Elsevier Science, Amsterdam, 2004. · Zbl 1076.65093
[18] H. Oberoi and N. Allewell, Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves, Biophys. J. 65 (1993), 48-55.
[19] S. I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp. 69 (2000), no. 230, 481-500. · Zbl 0949.65070
[20] S. I. Repin, On measures of errors for nonlinear variational problems, Russian J. Numer. Anal. Math. Modelling 27 (2012), no. 6, 577-584. · Zbl 1276.65036
[21] S. Repin and J. Valdman, Error identities for variational problems with obstacles, ZAMM Z. Angew. Math. Mech. 98 (2018), no. 4, 635-658.
[22] I. Sakalli, J. Schöberl and E. W. Knapp, mfes: A robust molecular finite element solver for electrostatic energy computations, J. Chem. Theory Comput. 10 (2014), 5095-5112.
[23] K. Sharp and B. Honig, Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation, J. Phys. Chem 94 (1990), 7684-7692.
[24] R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, 1977. · Zbl 0364.35001
[25] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Software 41 (2015), no. 2, Article ID 11. · Zbl 1369.65157
[26] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. 1, 189-258. · Zbl 0151.15401
[27] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. · Zbl 0163.36402
[28] A collection of molecular surface meshes, https://www.rocq.inria.fr/gamma/gamma/download/affichage.php?dir=MOLECULE&name=water_mol&last_page=6, Accessed: 2017-08-18. · Zbl 1331.92137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.