zbMATH — the first resource for mathematics

A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanics. (English) Zbl 1440.74246
Summary: In this work two mortar-based segment-to-segment contact formulations will be developed for the frictionless finite deformation case: While the first one is derived by consistent variation of all active contributions of a scalar-valued potential subject to inequality constraints, thus resulting in a truly variationally consistent and symmetric formulation, the second approach is designed in such a way that it is less computationally expensive, but still conserves important quantities such as linear and angular momentum. Since both formulations are derived side by side, the introduced simplifications and errors can be specifically analyzed and quantified. Based on a Lagrange multiplier approach the corresponding inequality constraint terms are introduced in two popular ways: Firstly, in form of a standard Lagrangian formulation and, secondly, via an augmented Lagrangian formulation. Both variational forms as well as both solution procedures will be consistently linearized and discussed. Finally, the obtained results will be compared to each other as well as to a well-established, yet slightly inconsistent, mortar-based contact formulation.

74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
FEAPpv; Filtrane; Ipopt
Full Text: DOI
[1] Zavarise, G.; De Lorenzis, L.; Taylor, R. L., A non-consistent start-up procedure for contact problems with large load-steps, Comput. Methods Appl. Mech. Engrg., 205, 91-109 (2012) · Zbl 1239.74003
[2] Wächter, A.; Biegler, L. T., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106, 1, 25-57 (2006) · Zbl 1134.90542
[3] Gould, N. I.; Toint, P. L., FILTRANE, a Fortran 95 filter-trust-region package for solving nonlinear least-squares and nonlinear feasibility problems, ACM Trans. Math. Software (TOMS), 33, 1, 3 (2007)
[4] Temizer, I.; Abdalla, M.; Gürdal, Z., An interior point method for isogeometric contact, Comput. Methods Appl. Mech. Engrg., 276, 589-611 (2014) · Zbl 1423.74682
[6] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (1988), SIAM · Zbl 0685.73002
[7] Wohlmuth, B., Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer., 20, 569-734 (2011) · Zbl 1432.74176
[8] Popp, A.; Gee, M. W.; Wall, W. A., A finite deformation mortar contact formulation using a primal-dual active set strategy, Internat. J. Numer. Methods Engrg., 79, 1354-1391 (2009) · Zbl 1176.74133
[9] Popp, A.; Gitterle, M.; Gee, M. W.; Wall, W. A., A dual mortar approach for 3D finite deformation contact with consistent linearization, Internat. J. Numer. Methods Engrg., 83, 11, 1428-1465 (2010) · Zbl 1202.74183
[10] Puso, M. A.; Laursen, T. A., A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 6, 601-629 (2004) · Zbl 1060.74636
[11] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg., 92, 3, 353-375 (1991) · Zbl 0825.76353
[12] Pietrzak, G.; Curnier, A., Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Comput. Methods Appl. Mech. Engrg., 177, 351-381 (1999) · Zbl 0991.74047
[13] De Lorenzis, L.; Wriggers, P.; Zavarise, G., A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 49, 1-20 (2012) · Zbl 1356.74146
[14] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge University Press · Zbl 1142.74002
[15] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000), Wiley · Zbl 0980.74001
[16] Yang, B.; Laursen, T. A.; Meng, X., Two dimensional contact methods for large deformation frictional sliding, Internat. J. Numer. Methods Engrg., 62, 1183-1225 (2005) · Zbl 1161.74497
[17] Laursen, T. A., Computational Contact and Impact Mechanics (2002), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 0996.74003
[18] Wriggers, P., Computational Contact Mechanics (2006), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 1104.74002
[19] Bathe, K. J., Finite Element Procedures (1996), Prentice Hall
[20] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics (2005), Elsevier Butterworth-Heinemann · Zbl 1084.74001
[21] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[22] Seitz, A.; Farah, P.; Kremheller, J.; Wohlmuth, B. I.; Wall, W. A.; Popp, A., Isogeometric dual mortar methods for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 301, 259-280 (2016)
[23] Farah, P.; Gitterle, M.; Wall, W.; Popp, A., Computational wear and contact modeling for fretting analysis with isogeometric dual mortar methods, Key Eng. Mater., 681, 1-18 (2016)
[24] Gouraud, H., Continuous shading of curved surfaces, IEEE Trans. Comput., 100, 6, 623-629 (1971) · Zbl 0219.68056
[25] Jin, S.; Lewis, R. R.; West, D., A comparison of algorithms for vertex normal computation, Vis. Comput., 21, 1, 71-82 (2005)
[26] Neto, D.; Oliveira, M.; Menezes, L.; Alves, J., A contact smoothing method for arbitrary surface meshes using Nagata patches, Comput. Methods Appl. Mech. Engrg., 299, 283-315 (2016)
[27] Yang, B.; Laursen, T. A., A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations, Comput. Mech., 41, 2, 189-205 (2008) · Zbl 1162.74481
[28] Rockafellar, R. T., The multiplier method of Hestenes and Powell applied to convex programming, J. Optim. Theory Appl., 12, 6, 555-562 (1973) · Zbl 0254.90045
[30] Nocedal, J.; Wright, S., Numerical Optimization (2006), Springer-Verlag: Springer-Verlag New York, NY · Zbl 1104.65059
[31] Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods (1996), Academic press
[32] Facchinei, F.; Lucidi, S., Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems, J. Optim. Theory Appl., 85, 2, 265-289 (1995) · Zbl 0830.90125
[33] Popp, A.; Wohlmuth, B. I.; Gee, M. W.; Wall, W. A., Dual quadratic mortar finite element methods for 3D finite deformation contact, SIAM J. Sci. Comput., 34, 4, B421-B446 (2012) · Zbl 1250.74020
[34] Farah, P.; Popp, A.; Wall, W. A., Segment-based vs. element-based integration for mortar methods in computational contact mechanics, Comput. Mech., 55, 1, 209-228 (2015) · Zbl 1311.74120
[35] Hesch, C.; Betsch, P., A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems, Internat. J. Numer. Methods Engrg., 77, 10, 1468-1500 (2009) · Zbl 1156.74378
[36] Hesch, C.; Betsch, P., Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration, Comput. Mech., 48, 4, 461-475 (2011) · Zbl 1398.74335
[38] Tur, M.; Giner, E.; Fuenmayor, F.; Wriggers, P., 2D contact smooth formulation based on the mortar method, Comput. Methods Appl. Mech. Engrg., 247, 1-14 (2012) · Zbl 1352.74443
[39] Puso, M. A.; Laursen, T. A., A 3D contact smoothing method using Gregory patches, Internat. J. Numer. Methods Engrg., 54, 8, 1161-1194 (2002) · Zbl 1098.74711
[40] Neto, D.; Oliveira, M. C.; Menezes, L. F.; Alves, J. L., Improving Nagata patch interpolation applied for tool surface description in sheet metal forming simulation, Comput. Aided Des., 45, 3, 639-656 (2013)
[41] Wilking, C.; Bischoff, M., Alternative integration algorithms for three-dimensional mortar contact, Comput. Mech., 59, 2, 203-218 (2017) · Zbl 06764461
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.