zbMATH — the first resource for mathematics

Block preconditioning for fault/fracture mechanics saddle-point problems. (English) Zbl 1440.74473
Summary: The efficient simulation of fault and fracture mechanics is a key issue in several applications and is attracting a growing interest by the scientific community. Using a formulation based on Lagrange multipliers, the Jacobian matrix resulting from the Finite Element discretization of the governing equations has a non-symmetric generalized saddle-point structure. In this work, we propose a family of block preconditioners to accelerate the convergence of Krylov methods for such problems. We critically review possible advantages and difficulties of using various Schur complement approximations, based on both physical and algebraic considerations. The proposed approaches are tested in a number of real-world applications, showing their robustness and efficiency also in large-size and ill-conditioned problems.
Reviewer: Reviewer (Berlin)

74S99 Numerical and other methods in solid mechanics
65F08 Preconditioners for iterative methods
74R10 Brittle fracture
Full Text: DOI
[1] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method: Solid Mechanics, Vol. 2 (2000), Butterworth-Heinemann · Zbl 0991.74003
[2] Bathe, K.-J., Finite Element Procedures (2006), Klaus-Jurgen Bathe
[3] Ferronato, M.; Janna, C.; Gambolati, G., Mixed constraint preconditioning in computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 197, 45, 3922-3931 (2008) · Zbl 1194.74522
[4] Ferronato, M.; Janna, C.; Pini, G., Parallel solution to ill-conditioned FE geomechanical problems, Int. J. Numer. Anal. Methods Geomech., 36, 4, 422-437 (2012)
[5] Khoei, A. R.; Lewis, R. W., Adaptive finite element remeshing in a large deformation analysis of metal powder forming, Internat. J. Numer. Methods Engrg., 45, 7, 801-820 (1999) · Zbl 0941.74065
[6] Onate, E.; Rojek, J., Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Comput. Methods Appl. Mech. Engrg., 193, 27, 3087-3128 (2004) · Zbl 1079.74646
[7] Rutqvist, J.; Tsang, C.-F., Coupled hydromechanical effects of CO \({}_2\) injection, (Tsang, C.-F.; Apps, J. A., Underground Injection Science and Technology (2005), Elsevier), 649-679
[8] Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F., Estimating maximum sustainable injection pressure during geological sequestration of CO \({}_2\) using coupled fluid flow and geomechanical fault-slip analysis, Energy Conv. Manag., 48, 6, 1798-1807 (2007)
[9] Ferronato, M.; Gambolati, G.; Janna, C.; Teatini, P., Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs, Int. J. Numer. Anal. Methods Geomech., 32, 6, 633-657 (2008) · Zbl 1273.74532
[10] Rinaldi, A. P.; Rutqvist, J., Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO \({}_2\) injection well, In Salah, Algeria, Int. J. Greenhouse Gas Control, 12, 155-167 (2013)
[11] Benkhira, E.-H.; Essoufi, E.-H.; Fakhar, R., On convergence of the penalty method for a static unilateral contact problem with nonlocal friction in electro-elasticity, European J. Appl. Math., 27, 1, 1-22 (2016) · Zbl 1387.74083
[13] Burman, E.; Ern, A., A nonlinear consistent penalty method for positivity preservation in the finite element approximation of the transport equation, Comput. Methods Appl. Mech. Engrg., 320, 122-132 (2017)
[14] Settgast, R. R.; Fu, P.; Walsh, S. D.C.; White, J. A.; Annavarapu, C.; Ryerson, F. J., A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions, Int. J. Numer. Anal. Methods Geomech., 41, 5, 627-653 (2017)
[15] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (1988), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 0685.73002
[16] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer-Verlag New York · Zbl 0934.74003
[17] Wathen, A. J., Preconditioning, Acta Numer., 24, 329-376 (2015) · Zbl 1316.65039
[18] Elman, H.; Howle, V. E.; Shadid, J.; Shuttleworth, R.; Tuminaro, R., Block preconditioners based on approximate commutators, SIAM J. Sci. Comput., 27, 5, 1651-1668 (2006) · Zbl 1100.65042
[19] Laursen, T., Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis (2003), Springer-Verlag Berlin Heidelberg
[20] Wriggers, P., Computational Contact Mechanics (2006), Springer-Verlag Berlin Heidelberg · Zbl 1104.74002
[21] Simo, J. C.; Laursen, T. A., An augmented Lagrangian treatment of contact problems involving friction, Comput. Struct., 42, 1, 97-116 (1992) · Zbl 0755.73085
[23] Annavarapu, C.; Hautefeuille, M.; Dolbow, J. E., A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface, Comput. Methods Appl. Mech. Engrg., 268, 417-436 (2014) · Zbl 1295.74096
[27] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[28] Hager, C.; Hüeber, S.; Wohlmuth, B. I., A stable energy-conserving approach for frictional contact problems based on quadrature formulas, Internat. J. Numer. Methods Engrg., 73, 2, 205-225 (2008) · Zbl 1166.74050
[29] Franceschini, A., Numerical models for the large-scale simualtion of fault and fracture mechanics (2018), University of Padova, Italy, (Phd thesis)
[32] Van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[33] Janna, C.; Ferronato, M.; Sartoretto, F.; Gambolati, G., FSAIPACK: A software package for high-performance factored sparse approximate inverse preconditioning, ACM Trans. Math. Software, 41, 2, 10 (2015) · Zbl 1369.65052
[34] Bu, Y.; Carpentieri, B.; Shen, Z.; Huang, T., A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems, Appl. Numer. Math., 104, 141-157 (2016) · Zbl 1336.65031
[35] Xi, Y.; Li, R.; Saad, Y., An algebraic multilevel preconditioner with low-rank corrections for sparse symmetric matrices, SIAM J. Matrix Anal. Appl., 37, 235-259 (2016) · Zbl 1376.65036
[36] Xu, J.; Zikatanov, L., Algebraic mulrigrid methods, Acta Numer., 26, 591-721 (2017) · Zbl 1378.65182
[37] Franceschini, A.; Paludetto Magri, V.; Ferronato, M.; Janna, C., A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices, SIAM J. Matrix Anal. Appl., 39, 1, 123-147 (2018) · Zbl 1383.65019
[38] Aagaard, B. T.; Knepley, M. G.; Williams, C. A., A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, J. Geophys. Res.-Solid Earth, 118, 6, 3059-3079 (2013)
[39] Jha, B.; Juanes, R., Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 5, 3776-3808 (2014)
[40] Castelletto, N.; White, J. A.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312
[41] Janna, C.; Ferronato, M.; Gambolati, G., The use of supernodes in factored sparse approximate inverse preconditioning, SIAM J. Sci. Comput., 37, 1, C72-C94 (2015) · Zbl 1327.65062
[42] Silvester, D.; Elman, H.; Kay, D.; Wathen, A., Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128, 1-2, 261-279 (2001) · Zbl 0983.76051
[43] Kolotilina, L. Y.; Yeremin, A. Y., Factorized sparse approximate inverse preconditionings I. Theory, SIAM J. Matrix Anal. Appl., 14, 1, 45-58 (1993) · Zbl 0767.65037
[44] Huckle, T., Approximate sparsity patterns for the inverse of a matrix and preconditioning, Appl. Numer. Math., 30, 2-3, 291-303 (1999) · Zbl 0927.65045
[45] Chow, E., A priori sparsity patterns for parallel sparse approximate inverse preconditioners, SIAM J. Sci. Comput., 21, 5, 1804-1822 (2000) · Zbl 0957.65023
[46] Huckle, T., Factorized sparse approximate inverses for preconditioning, J. Supercomput., 25, 2, 109-117 (2003) · Zbl 1027.65056
[47] Janna, C.; Ferronato, M., Adaptive pattern research for block FSAI preconditioning, SIAM J. Sci. Comput., 33, 6, 3357-3380 (2011) · Zbl 1273.65045
[48] Vaněk, P.; Brezina, M.; Tezaur, R., Two-grid method for linear elasticity on unstructured meshes, SIAM J. Sci. Comput., 21, 3, 900-923 (1999) · Zbl 0952.65099
[50] Lin, C.; Moré, C. C., Incomplete cholesky factorizations with limited memory, SIAM J. Sci. Comput., 21, 1, 24-45 (1999) · Zbl 0941.65033
[51] Si, H., TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator, ACM Trans. Math. Software, 41, 2, 11:1-11:36 (2015) · Zbl 1369.65157
[52] Schenk, O.; Gärtner, K., Pardiso, (Padua, D., Encyclopedia of Parallel Computing (2011), Springer US: Springer US Boston, MA), 1458-1464
[53] Shi, X.; Xue, Y.; Ye, S.; Wu, J.; Zhang, Y.; Jun, Y., Characterization of land subsidence induced by groundwater withdrawals in Su-Xi-Chang area, China, Environ. Geol., 52, 27-40 (2007)
[54] Wang, G.; You, G.; Shi, B.; Yu, J.; Li, H.; Zong, K., Earth fissures triggered by groundwater withdrawal and coupled by geological structures in Jiangsu Province, China, Environ. Geol., 57, 1047-1054 (2009)
[55] Franceschini, A.; Teatini, P.; Janna, C.; Ferronato, M.; Gambolati, G.; Ye, S.; Carreon-Freyre, D., Modeling ground rupture due to groundwater withdrawal: applications to test cases in China and Mexico, (Proceedings of the International Association of Hydrological Sciences, Vol. 362 (2015)), 63-68
[56] Teatini, P.; Castelletto, N.; Ferronato, M.; Gambolati, G.; Janna, C.; Cairo, E.; Marzorati, D.; Colombo, D.; Ferretti, A.; Bagliani, A.; Bottazzi, F., Geomechanical response to seasonal gas storage in depleted reservoirs: a case study in the Po river basin, Italy, J. Geophys. Res.-Earth Surf., 116, F02002 (2011)
[57] Jha, B.; Bottazzi, F.; Wojcik, R.; Coccia, M.; Bechor, N.; McLaughlin, D.; Herring, T.; Hager, B. H.; Mantica, S.; Juanes, R., Reservoir characterization in an underground gas storage field using joint inversion of flow and geodetic data, Int. J. Numer. Anal. Methods Geomech., 39, 14, 1619-1638 (2015)
[58] Fokker, P.; Wassing, B.; van Leijen, F.; Hanssen, R.; Nieuwland, D., Application of an ensemble smoother with multiple data assimilation to the Bergermeer gas field, using PS-InSAR, Geomech. Energy Environ., 5, 16-28 (2016)
[59] Zoccarato, C.; Baù, D.; Ferronato, M.; Gambolati, G.; Alzraiee, A.; Teatini, P., Data assimilation of surface displacements to improve geomechanical parameters of gas storage reservoirs, J. Geophys. Res.-Solid Earth, 121, 1441-1461 (2016)
[60] Priolo, E.; Romanelli, M.; Plasencia Linares, M.; Garbin, M.; Peruzza, L.; Romano, M.; Marotta, P.; Bernardi, P.; Moratto, L.; Zuliani, D.; Fabris, P., Seismic monitoring of an underground natural gas storage facility: The Collalto seismic network, Seismol. Res. Lett., 86, 1, 109-123 (2015)
[61] Gaite, B.; Ugalde, A.; Villaseño, A.; Blanc, E., Improving the location of induced earthquakes associated with an underground gas storage in the Gulf of Valencia (Spain), Phys. Earth Planet. Inter., 254, 46-59 (2016)
[62] Schultz, R.; Wang, R.; Gu, Y.; Haug, K.; Atkinson, G., A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta, J. Geophys. Res. Solid Earth, 122, 492-505 (2017)
[63] van Wees, J.; Osinga, S.; van Thienen-Visser1, K.; Fokker, P., Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field, Geophys. J. Int., 212, 1487-1497 (2018)
[64] Zoccarato, C.; Baù, D.; Bottazzi, F.; Ferronato, M.; Gambolati, G.; Mantica, S.; Teatini, P., On the importance of the heterogeneity assummption in the characterization of reservoir geomechanical properties, Geophys. J. Int., 207, 47-58 (2016)
[65] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 1002.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.