×

zbMATH — the first resource for mathematics

Application of a non-conforming tetrahedral element in the context of the three-dimensional strain gradient elasticity. (English) Zbl 1440.74445
Summary: In the size-dependent continuum theories such as the strain gradient theory, the higher-order derivatives of displacement field appear in the energy functional of the structure which leads to the employment of \(C^1\) continuous shape functions within the finite element discretization procedure. Although a wide range of one- and two-dimensional small-scale finite elements were developed to analyze the structural behavior of micro- and nano-structures, a few studies can be found on the development of size-dependent three-dimensional (3D) finite elements. Hence, the main purpose of this work is the introduction of a four-node tetrahedral element to analyze the size-dependent mechanical behavior of micro- and nano-structures based on the three-dimensional strain gradient theory (SGT). In the proposed element, the values of displacement components and their related first-order derivatives are considered as degrees of freedom at each node. To present the governing equations, the matrix form of kinetic and strain energies and the work of external forces are derived based on the 3D elasticity theory and strain gradient model. To show the efficiency of the proposed model, the size-dependent linear vibration analysis of circular and elliptical micro- and nano-plates is presented. Various numerical results including comparative and convergence studies are reported to check the accuracy and performance of the introduced finite element.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
Software:
MAT-fem
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 1, 415-448 (1962) · Zbl 0112.38906
[2] Koiter, W. T., Couple stresses in the theory of elasticity, Proc. K. Ned. Akad. Wet., 67 (1964) · Zbl 0124.17405
[3] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78 (1964) · Zbl 0119.40302
[4] Yang, F. A.C. M.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 10, 2731-2743 (2002) · Zbl 1037.74006
[5] Lam, D. C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 8, 1477-1508 (2003) · Zbl 1077.74517
[6] Reddy, J. N., Microstructure-dependent couple stress theories of functionally graded beams, J. Mech. Phys. Solids, 59, 11, 2382-2399 (2011) · Zbl 1270.74114
[7] Ke, L. L.; Wang, Y. S.; Yang, J.; Kitipornchai, S., Nonlinear free vibration of size-dependent functionally graded microbeams, Internat. J. Engrg. Sci., 50, 1, 256-267 (2012) · Zbl 1423.74395
[8] Kahrobaiyan, M. H.; Asghari, M.; Ahmadian, M. T., Strain gradient beam element, Finite Elem. Anal. Des., 68, 63-75 (2013) · Zbl 1302.74089
[9] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Darabi, M. A., Coupled longitudinal-transverse-rotational free vibration of post-buckled functionally graded first-order shear deformable micro-and nano-beams based on the Mindlin’s strain gradient theory, Appl. Math. Model., 40, 23, 9872-9891 (2016)
[10] Gao, X. L.; Huang, J. X.; Reddy, J. N., A non-classical third-order shear deformation plate model based on a modified couple stress theory, Acta Mech., 224, 11, 2699-2718 (2013) · Zbl 1336.74042
[11] Ramezani, S., A shear deformation micro-plate model based on the most general form of strain gradient elasticity, Int. J. Mech. Sci., 57, 1, 34-42 (2012)
[12] Akgöz, B.; Civalek, Ö., Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory, Mater. Des., 42, 164-171 (2012)
[13] Ke, L. L.; Wang, Y. S.; Yang, J.; Kitipornchai, S., Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, J. Sound Vib., 331, 1, 94-106 (2012)
[14] Jomehzadeh, E.; Noori, H. R.; Saidi, A. R., The size-dependent vibration analysis of micro-plates based on a modified couple stress theory, Physica E, 43, 4, 877-883 (2011)
[15] Wang, Y. G.; Lin, W. H.; Liu, N., Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory, Int. J. Mech. Sci., 71, 51-57 (2013)
[16] Zhou, S. S.; Gao, X. L., A nonclassical model for circular Mindlin plates based on a modified couple stress theory, J. Appl. Mech., 81, 5, 051014 (2014)
[17] Ke, L. L.; Yang, J.; Kitipornchai, S.; Bradford, M. A., Bending, buckling and vibration of size-dependent functionally graded annular microplates, Compos. Struct., 94, 11, 3250-3257 (2012)
[18] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Sahmani, S., Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory, Eur. J. Mech.-A/Solids, 49, 251-267 (2015) · Zbl 1406.74526
[19] Salehipour, H.; Nahvi, H.; Shahidi, A. R., Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories, Compos. Struct., 124, 283-291 (2015)
[20] Kwon, Y. R.; Lee, B. C., A mixed element based on Lagrange multiplier method for modified couple stress theory, Comput. Mech., 59, 1, 117-128 (2017) · Zbl 1398.74352
[21] Reddy, J. N.; Romanoff, J.; Loya, J. A., Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory, Eur. J. Mech.-A/Solids, 56, 92-104 (2016) · Zbl 1406.74448
[22] Zervos, A.; Papanicolopulos, S. A.; Vardoulakis, I., Two finite-element discretizations for gradient elasticity, J. Eng. Mech., 135, 3, 203-213 (2009) · Zbl 1156.74382
[23] Zervos, A., Finite elements for elasticity with microstructure and gradient elasticity, Internat. J. Numer. Methods Engrg., 73, 4, 564-595 (2008) · Zbl 1166.74043
[24] Zybell, L.; Mühlich, U.; Kuna, M.; Zhang, Z. L., A three-dimensional finite element for gradient elasticity based on a mixed-type formulation, Comput. Mater. Sci., 52, 1, 268-273 (2012)
[25] Ansari, R.; Shojaei, M. F.; Mohammadi, V.; Bazdid-Vahdati, M.; Rouhi, H., Triangular Mindlin microplate element, Comput. Methods Appl. Mech. Engrg., 295, 56-76 (2015)
[26] Ansari, R.; Shojaei, M. F.; Shakouri, A. H.; Rouhi, H., Nonlinear bending analysis of first-order shear deformable microscale plates using a strain gradient quadrilateral element, J. Comput. Nonlinear Dyn., 11, 5, 051014 (2016)
[27] Papanicolopulos, S. A.; Zervos, A.; Vardoulakis, I., A three-dimensional C1 finite element for gradient elasticity, Internat. J. Numer. Methods Engrg., 77, 10, 1396-1415 (2009) · Zbl 1156.74382
[28] Kwon, Y. R.; Lee, B. C., Three dimensional elements with Lagrange multipliers for the modified couple stress theory, Comput. Mech., 1-14 (2017)
[29] Ming, W.; Xu, J., Nonconforming tetrahedral finite elements for fourth order elliptic equations, Math. Comp., 76, 257, 1-18 (2007) · Zbl 1125.65105
[30] Papanicolopulos, S. A., Chirality in isotropic linear gradient elasticity, Int. J. Solids Struct., 48, 5, 745-752 (2011) · Zbl 1236.74024
[31] Auffray, N.; Quang, H. Le.; He, Q. C., Matrix representations for 3D strain-gradient elasticity, J. Mech. Phys. Solids, 61, 5, 1202-1223 (2013) · Zbl 1260.74012
[32] Oñate, E., Structural Analysis with the Finite Element Method. Linear Statics: Volume 1: Basis and Solids (2013), Springer Science & Business Media
[33] Liew, K. M.; Kitipornchai, S.; Lim, C. W., Free vibration analysis of thick superelliptical plates, J. Eng. Mech., 124, 2, 137-145 (1998)
[34] Çeribaşı, S.; Altay, G., Free vibration of super elliptical plates with constant and variable thickness by Ritz method, J. Sound Vib., 319, 1-2, 668-680 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.