×

zbMATH — the first resource for mathematics

Topology optimization of multi-material structures with graded interfaces. (English) Zbl 1440.74288
Summary: Using the advanced manufacturing methods and in particular addictive manufacturing, the multi-material structure with graded interface is allowed to be achieved. In this paper, a SIMP-based method is presented to handle topology optimization of the multi-material structure with graded interface. An extended two-step filtering approach is developed to describe the multi-material structure and identify the material interface, where the density smoothing and projection scheme are used. Based on this approach, the width of the interface zone can be controlled and the graded interface is able to be constructed. Then a new SIMP-based interpolation scheme is proposed to define the properties of the multi-material structure with graded interface. The minimum compliance problem is considered with two kinds of optimization models under different constraints. One is subject to both mass and cost constraints to control the amounts of different materials and interface zones; while the other is only subject to a structural cost constraint. To solve these problems, the sensitivities of the objective function and constraints over design variables are derived. Numerical examples are presented to test the proposed method. Results show that the multi-material structure with graded interface can be described and optimized effectively. The width of the interface zone and the graded interface properties can be well controlled and defined, respectively. Due to its generality, the proposed method can be readily integrated into other SIMP-based methods to extent to a broader range of multi-material problems.
MSC:
74P15 Topological methods for optimization problems in solid mechanics
74A50 Structured surfaces and interfaces, coexistent phases
Software:
top88.m; top.m
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lieu, Q. X.; Lee, J., A multi-resolution approach for multi-material topology optimization based on isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 323, 272-302 (2017)
[2] Liu, J.; Ma, Y., A new multi-material level set topology optimization method with the length scale control capability, Comput. Methods Appl. Mech. Engrg., 329, 444-463 (2018)
[3] Chau, K. N.; Chau, K. N.; Ngo, T.; Hackl, K.; Nguyen-Xuan, H., A polytree-based adaptive polygonal finite element method for multi-material topology optimization, Comput. Methods Appl. Mech. Engrg., 332, 712-739 (2018)
[4] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654 (1999) · Zbl 0957.74037
[5] Sigmund, O.; Torquato, S., Composites with extremal thermal expansion coefficients, Appl. Phys. Lett., 69, 3203-3205 (1996)
[6] Sigmund, O.; Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 1037-1067 (1997)
[7] Gibiansky, L. V.; Sigmund, O., Multiphase composites with extremal bulk modulus, J. Mech. Phys. Solids, 48, 461-498 (2000) · Zbl 0989.74060
[8] Bendsoe, M.; Sigmund, O., Topology Optimization-Theory, Methods and Applications (2003), Springer · Zbl 1059.74001
[9] Hvejsel, C. F.; Lund, E., Material interpolation schemes for unified topology and multi-material optimization, Struct. Multidiscip. Optim., 43, 811-825 (2011) · Zbl 1274.74344
[10] Zuo, W.; Saitou, K., Multi-material topology optimization using ordered SIMP interpolation, Struct. Multidiscip. Optim., 55, 477-491 (2017)
[11] Wang, M. Y.; Wang, X., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Engrg., 193, 469-496 (2004) · Zbl 1060.74585
[12] Luo, Z.; Tong, L.; Luo, J.; Wei, P.; Wang, M. Y., Design of piezoelectric actuators using a multiphase level set method of piecewise constants, J. Comput. Phys., 228, 2643-2659 (2009) · Zbl 1160.78322
[13] Wei, P.; Wang, M. Y., Piecewise constant level set method for structural topology optimization, Internat. J. Numer. Methods Engrg., 78, 379-402 (2009) · Zbl 1183.74222
[14] Wang, Y.; Luo, Z.; Kang, Z.; Zhang, N., A multi-material level set-based topology and shape optimization method, Comput. Methods Appl. Mech. Engrg., 283, 1570-1586 (2015) · Zbl 1423.74769
[15] Guo, X.; Zhang, W.; Zhong, W., Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework, J. Appl. Mech., 81 (2014), 081009-081009-081012
[16] Zhang, W.; Yuan, J.; Zhang, J.; Guo, X., A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidiscip. Optim., 53, 1243-1260 (2016)
[17] Zhang, W.; Song, J.; Zhou, J.; Du, Z.; Zhu, Y.; Sun, Z.; Guo, X., Topology optimization with multiple materials via moving morphable component (MMC) method, Internat. J. Numer. Methods Engrg., 11, 3 (2017)
[18] Behrou, R.; Lawry, M.; Maute, K., Level set topology optimization of structural problems with interface cohesion, Internat. J. Numer. Methods Engrg., 112, 990-1016 (2017)
[19] Liu, P.; Luo, Y.; Kang, Z., Multi-material topology optimization considering interface behavior via XFEM and level set method, Comput. Methods Appl. Mech. Engrg., 308, 113-133 (2016)
[20] Faure, A.; Michailidis, G.; Parry, G.; Vermaak, N.; Estevez, R., Design of thermoelastic multi-material structures with graded interfaces using topology optimization, Struct. Multidiscip. Optim., 56, 823-837 (2017)
[21] Jansen, M.; Lazarov, B. S.; Schevenels, M.; Sigmund, O., On the similarities between micro/nano lithography and topology optimization projection methods, Struct. Multidiscip. Optim., 48, 717-730 (2013)
[22] Creton, C.; Kramer, E. J.; Brown, H. R.; Hui, C.-Y., Adhesion and fracture of interfaces between immiscible polymers: from the molecular to the continuum scal, (Molecular Simulation Fracture Gel Theory (2001), Springer), 53-136
[23] Tan, C.; Wang, G.; Ji, L.; Tong, Y.; Duan, X.-M., Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering, J. Nucl. Mater., 469, 32-38 (2016)
[24] Kieback, B.; Neubrand, A.; Riedel, H., Processing techniques for functionally graded materials, Mater. Sci. Eng. A, 362, 81-106 (2003)
[25] Vermaak, N.; Michailidis, G.; Parry, G.; Estevez, R.; Allaire, G.; Bréchet, Y., Material interface effects on the topology optimizationof multi-phase structures using a level set method, Struct. Multidiscip. Optim., 50, 623-644 (2014)
[26] Clausen, A.; Aage, N.; Sigmund, O., Topology optimization of coated structures and material interface problems, Comput. Methods Appl. Mech. Engrg., 290, 524-541 (2015)
[28] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1-16 (2011) · Zbl 1274.74310
[29] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 767-784 (2011) · Zbl 1274.74409
[30] Zhang, W.; Zhong, W.; Guo, X., An explicit length scale control approach in SIMP-based topology optimization, Comput. Methods Appl. Mech. Engrg., 282, 71-86 (2014) · Zbl 1423.74776
[31] Guo, X.; Zhang, W.; Zhong, W., Explicit feature control in structural topology optimization via level set method, Comput. Methods Appl. Mech. Engrg., 272, 354-378 (2014) · Zbl 1296.74081
[32] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2006), Springer Science & Business Media
[33] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 120-127 (2001)
[34] Yin, L.; Yang, W., Optimality criteria method for topology optimization under multiple constraints, Comput. Struct., 79, 1839-1850 (2001)
[35] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[36] Svanberg, K., A class of globally convergent optimization methods based on conservative convex separable approximations, SIAM J. Optim., 12, 555-573 (2002) · Zbl 1035.90088
[37] Wang, Y.; Kang, Z., A level set method for shape and topology optimization of coated structures, Comput. Methods Appl. Mech. Engrg., 329, 553-574 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.