×

zbMATH — the first resource for mathematics

Model-based exception mining for object-relational data. (English) Zbl 1433.68375
Summary: This paper develops model-based exception mining and outlier detection for the case of object-relational data. Object-relational data represent a complex heterogeneous network, which comprises objects of different types, links among these objects, also of different types, and attributes of these links. We follow the well-established exceptional model mining (EMM) framework, which has been previously applied for subgroup discovery in propositional data; our novel contribution is to develop EMM for relational data. EMM leverages machine learning models for exception mining: An object is exceptional to the extent that a model learned for the object data differs from a model learned for the general population. In relational data, EMM can therefore be used for detecting single outlier or exceptional objects. We combine EMM with state-of-the-art statistical-relational model discovery methods for constructing a graphical model (Bayesian network), that compactly represents probabilistic associations in the data. We investigate several outlierness metrics, based on the learned object-relational model, that quantify the extent to which the association pattern of a potential outlier object deviates from that of the whole population. Our method is validated on synthetic data sets and on real-world data sets about soccer and hockey matches, IMDb movies and mutagenic compounds. Compared to baseline methods, the EMM approach achieved the best detection accuracy when combined with a novel outlinerness metric. An empirical evaluation on soccer and movie data shows a strong correlation between our novel outlierness metric and success metrics: Individuals that our metric marks out as unusual tend to have unusual success.
MSC:
68T05 Learning and adaptive systems in artificial intelligence
68T09 Computational aspects of data analysis and big data
Software:
GitHub; LOF; ROCR
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Achtert E, Kriegel H-P, Schubert E, Zimek A (2013) Interactive data mining with 3D-parallel coordinate trees. In: Proceedings ACM special interest group on management of data, New York, NY, USA, pp 1009-1012. doi:10.1145/2463676.2463696
[2] Aggarwal CC (2013) Outlier analysis. Springer, New York. ISBN 9781461463955. http://books.google.ca/books?id=900CkgEACAAJ · Zbl 1291.68004
[3] Akoglu L, McGlohon M, Faloutsos C (2010) Oddball: spotting anomalies in weighted graphs. In: Proceedings Pacific-Asia conference on knowledge discovery and data mining, pp 410-421. doi:10.1007/978-3-642-13672-6_40
[4] Akoglu, L.; Tong, H.; Koutra, D., Graph based anomaly detection and description: a survey, Data Min Knowl Discov, 29, 3, 626-688 (2015)
[5] Albert, J.; Glickman, ME; Swartz, TB; Koning, RH, Handbook of statistical methods and analyses in sports (2017), Boca Raton: CRC Press, Boca Raton
[6] Anderson G, Pfahringer B (2008) Exploiting propositionalization based on random relational rules for semi-supervised learning. In: Proceedings Pacific-Asia conference on knowledge discovery and data mining, pp 494-502. doi:10.1007/978-3-540-68125-0_43
[7] Angiulli, F.; Greco, G.; Palopoli, L., Outlier detection by logic programming, ACM Trans Comput Logic, 9, 1-7, 7 (2004) · Zbl 1367.68314
[8] Beirlant, J.; Györfi, L.; Lugosi, G., On the asymptotic normality of the L1-and L2-errors in histogram density estimation, Can J Stat, 22, 3, 309-318 (1994) · Zbl 0816.62037
[9] Beirlant, J.; Devroye, L.; Györfi, L.; Vajda, I., Large deviations of divergence measures on partitions, J Stat Plan Inference, 93, 1-2, 1-16 (2001) · Zbl 0996.62052
[10] Breunig M, Kriegel H-P, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings ACM special interest group on management of data, pp 93-104. doi:10.1145/342009.335388
[11] Cansado, A.; Soto, A., Unsupervised anomaly detection in large databases using Bayesian networks, Appl Artif Intell, 22, 309-330 (2008)
[12] de Campos, L., A scoring function for learning Bayesian networks based on mutual information and conditional independence tests, J Mach Learn Res, 7, 2149-2187 (2006) · Zbl 1222.62036
[13] Domingos, P.; Lowd, D., Markov logic: an interface layer for artificial intelligence (2009), San Francisco: Morgan and Claypool Publishers, San Francisco · Zbl 1202.68403
[14] Domingos, P.; Richardson, M.; Getoor, L.; Taskar, B., Markov logic: a unifying framework for statistical relational learning, Introduction to statistical relational learning (2007), Cambridge: MIT Press, Cambridge
[15] Duivesteijn, W.; Feelders, AJ; Knobbe, A., Exceptional model mining, Data Min Knowl Discov, 30, 1, 47-98 (2016) · Zbl 1411.68096
[16] Fawcett, T., An introduction to ROC analysis, Pattern Recognit Lett, 27, 8, 861-874 (2006)
[17] Fisher, RA, On the probable error of a coefficient of correlation deduced from a small sample, Metron, 1, 3-32 (1921)
[18] Gao J, Liang F, Fan W, Wang C, Sun Y, Han J (2010) On community outliers and their efficient detection in information networks. In: Proceedings ACM special interest group on knowledge discovery and data mining, New York, NY, USA, pp 813-822. ACM. ISBN 978-1-4503-0055-1. doi:10.1145/1835804.1835907
[19] Garcia-del Barrio P, Pujol F (2004) Pay and performance in the Spanish soccer league: who gets the expected monopsony rents? Faculty Working Papers 05/04, School of Economics and Business Administration, University of Navarra, March 2004. https://ideas.repec.org/p/una/unccee/wp0504.html
[20] Getoor L (2001) Learning statistical models from relational data. PhD thesis, Department of Computer Science, Stanford University
[21] Getoor, L.; Taskar, B., Introduction to statistical relational learning (2007), Cambridge: MIT Press, Cambridge · Zbl 1141.68054
[22] Hall, S.; Szymanski, S.; Zimbalist, AS, Testing causality between team performance and payroll: the cases of Major League Baseball and English Soccer, J Sports Econ, 3, 2, 149-168 (2002)
[23] Halpern, JY, An analysis of first-order logics of probability, Artif Intell, 46, 3, 311-350 (1990) · Zbl 0723.03007
[24] Heckerman, D.; Meek, C.; Koller, D.; Getoor, L.; Taskar, B., Probabilistic entity-relationship models, PRMs, and plate models, Introduction to statistical relational learning (2007), Cambridge: MIT Press, Cambridge
[25] Horváth T, Alexin Z, Gyimóthy T, Wrobel S (1999) Application of different learning methods to Hungarian part-of-speech tagging. In: Dzeroski S, Flach P (eds) Inductive logic programming: 9th international workshop. ILP-99 Bled. Springer, Berlin, pp 128-139
[26] Horváth, T.; Wrobel, S.; Bohnebeck, U., Relational instance-based learning with lists and terms, Mach Learn, 43, 1, 53-80 (2001) · Zbl 0988.68039
[27] Khosravi H, Man T, Hu J, Gao E, Mar R, Schulte O (2019) Factorbase code. https://github.com/sfu-ml-lab/FactorBase. Accessed 15 Nov 2016
[28] Khot T, Natarajan S, Shavlik JW (2014) Relational one-class classification: a non-parametric approach. In: Proceedings association for the advancement of artificial intelligence, Quebec City, Quebec, Canada, pp 2453-2459. http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8578. Accessed 10 Dec 2017
[29] Kimmig, A.; Mihalkova, L.; Getoor, L., Lifted graphical models: a survey, Mach Learn, 99, 1, 1-45 (2014) · Zbl 1320.62016
[30] Kirsten, M.; Wrobel, S.; Horváth, T.; Dzeroski, S.; Lavrac, N., Distance-based approaches to relational learning and clustering, Relational data mining, 213-232 (2001), Berlin: Springer, Berlin
[31] Knobbe, AJ, Multi-relational data mining (2006), Amsterdam: IOS Press, Amsterdam · Zbl 1138.68376
[32] Koh JLY, Lee ML, Hsu W, Ang WT (2008) Correlation-based attribute outlier detection in XML. In: Proceedings international council for open and distance education, Cancun, Mexico. IEEE, pp 1522-1524. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4492792
[33] Koller D, Pfeffer A (1997) Object-oriented Bayesian networks. In: Geiger D, Shenoy PP (eds) Proceedings uncertainty in artificial intelligence. Morgan Kaufmann, Burlington, pp 302-313. arXiv:1302.1554
[34] Kramer S, Lavrac N, Flach P (2000) Propositionalization approaches to relational data mining. In: Dzeroski S (ed) Relational data mining. Springer, Berlin, pp 262-286
[35] Kuzelka O, Zeleznỳ F (2008) Hifi: tractable propositionalization through hierarchical feature construction. In: Late breaking papers, inductive logic programming, p 69
[36] Liu G, Schulte O (2018) Deep reinforcement learning in ice hockey for context-aware player evaluation. In: Proceedings international joint conference on artificial intelligence. International Joint Conferences on Artificial Intelligence Organization, pp 3442-3448. doi:10.24963/ijcai.2018/478
[37] Maervoet, J.; Vens, C.; Berghe, GV; Blockeel, H.; Causmaecker, PD, Outlier detection in relational data: a case study in geographical information systems, Expert Syst Appl, 39, 5, 4718-4728 (2012)
[38] Müller E, Assent I, Iglesias P, Mülle Y, Böhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: Proceedings international conference on data mining (ICDM), pp 529-538
[39] Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E., A review of relational machine learning for knowledge graphs, Proc IEEE, 104, 1, 11-33 (2016)
[40] Nielsen, F.; Nock, R., On the chi square and higher-order Chi distances for approximating f-divergences, IEEE Signal Process Lett, 21, 1, 10-13 (2014)
[41] Novak, PK; Lavrač, N.; Webb, GI, Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining, J Mach Learn Res, 10, 377-403 (2009) · Zbl 1235.68178
[42] Pearl, J., Probabilistic reasoning in intelligent systems (1988), Burlington: Morgan Kaufmann, Burlington
[43] Peralta V (2007) Extraction and integration of MovieLens and IMDb. Technical report. Alternative Project Delivery Methods
[44] Perovsek M, Vavpetic A, Cestnik B, Lavrac N (2013) A wordification approach to relational data mining. In: Proceedings DS, lecture notes in computer science, pp 141-154. Springer, Singapore. doi:10.1007/978-3-642-40897-7_10
[45] Poole D (2003) First-order probabilistic inference. In: Proceedings international joint conference on artificial intelligence, pp 985-991
[46] Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceedings ACM special interest group on management of data, pp 427-438. doi:10.1145/342009.335437
[47] Riahi F, Schulte O (2015a) Model-based outlier detection for object-relational data. In: Proceedings symposium series on computational intelligence. IEEE, pp 1590-1598. doi:10.1109/SSCI.2015.224
[48] Riahi F, Schulte O (2015b) Codes and datasets. ftp://ftp.fas.sfu.ca/pub/cs/oschulte/CodesAndDatasets/. Accessed 15 Nov 2016
[49] Riahi F, Schulte O (2016) Propositionalization for unsupervised outlier detection in multi-relational data. In: Proceedings international conference of the Florida artificial intelligence, Key Largo, Florida, USA, pp 448-453. http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12786. Accessed 2 Jan 2017
[50] Riedel S, Yao L, McCallum A, Marlin BM (2013) Relation extraction with matrix factorization and universal schemas. In: Proceedings annual conference of the North American Chapter of the Association for Computational Linguistics, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, pp 74-84. http://aclweb.org/anthology/N/N13/N13-1008.pdf
[51] Routley K, Schulte O (2015) A Markov game model for valuing player actions in ice hockey. In: Proceedings uncertainty in artificial intelligence, pp 782-791
[52] Sarawagi S, Agrawal R, Megiddo N (1998) Discovery-driven exploration of OLAP data cubes. In: Proceedings extending database technology, Valencia, Spain, pp 168-182. Springer, Berlin. doi:10.1007/BFb0100984
[53] Schulte O (2011) A tractable pseudo-likelihood function for Bayesian networks applied to relational data. In: Proceedings society for industrial and applied mathematics, pp 462-473. doi:10.1137/1.9781611972818.40
[54] Schulte O, Gholami S (2017) Locally consistent Bayesian network scores for multi-relational data. In: Proceedings international joint conference on artificial intelligence, Melbourne, Australia, pp 2693-2700. doi:10.24963/ijcai.2017/375
[55] Schulte, O.; Khosravi, H., Learning graphical models for relational data via lattice search, Mach Learn, 88, 3, 331-368 (2012)
[56] Schulte O, Routley K (2014) Aggregating predictions versus aggregating features for relational classification. In: Proceedings center for information-development management, Orlando, FL, USA, pp 121-128. IEEE. doi:10.1109/CIDM.2014.7008657
[57] Schulte, O.; Khosravi, H.; Kirkpatrick, A.; Gao, T.; Zhu, Y., Modelling relational statistics with Bayesian networks, Mach Learn, 94, 105-125 (2014) · Zbl 1319.68190
[58] Sing T, Sander O, Beerenwinkel N, Lengauer T (2012) ROCR: visualizing the performance of scoring classifiers. http://cran.r-project.org/package=ROCR. Accessed 15 Nov 2016
[59] Sun Y, Han J, Zhao P (2009) Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: Proceedings extending database technology, New York, NY, USA, pp 565-576. ACM
[60] Tang G, Bailey J, Pei J, Dong G (2013) Mining multidimensional contextual outliers from categorical relational data. In: Proceedings scientific and statistical database management conference, pp 1171-1192. doi:10.3233/IDA-150764
[61] Tuffery S (2011) Data mining and statistics for decision making. Wiley series in computational statistics. http://ca.wiley.com/WileyCDA/WileyTitle/productCd-0470688297.html. Accessed 15 Nov 2016 · Zbl 1216.62005
[62] Wang DZ, Michelakis E, Garofalakis M, Hellerstein JM (2008) BayesStore: managing large, uncertain data repositories with probabilistic graphical models. In: Proceedings very large data bases. VLDB Endowment, pp 340-351. doi:10.14778/1453856.1453896. http://www.vldb.org/pvldb/1/1453896.pdf. Accessed 15 Nov 2016
[63] Xiang R, Neville J (2011) Relational learning with one network: an asymptotic analysis. In: Proceedings artificial intelligence and statistics, pp 779-788. http://proceedings.mlr.press/v15/xiang11a/xiang11a.pdf. Accessed 15 Nov 2016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.