×

zbMATH — the first resource for mathematics

Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. (English) Zbl 1441.74152
Summary: We develop a density based topology optimization method for linear elasticity based on the cut finite element method. More precisely, the design domain is discretized using cut finite elements which allow complicated geometry to be represented on a structured fixed background mesh. The geometry of the design domain is allowed to cut through the background mesh in an arbitrary way and certain stabilization terms are added in the vicinity of the cut boundary, which guarantee stability of the method. Furthermore, in addition to standard Dirichlet and Neumann conditions we consider interface conditions enabling coupling of the design domain to parts of the structure for which the design is already given. These given parts of the structure, called the nondesign domain regions, typically represent parts of the geometry provided by the designer. The nondesign domain regions may be discretized independently from the design domains using for example parametric meshed finite elements or isogeometric analysis. The interface and Dirichlet conditions are based on Nitsche’s method and are stable for the full range of density parameters. In particular we obtain a traction-free Neumann condition in the limit when the density tends to zero.
MSC:
74P15 Topological methods for optimization problems in solid mechanics
74B05 Classical linear elasticity
Software:
CutFEM; top88.m; top.m
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[2] Klarbring, A.; Strömberg, N., Topology optimization of hyperelastic bodies including non-zero prescribed displacements, Struct. Multidiscip. Optim., 47, 1, 37-48 (2013) · Zbl 1274.74351
[3] Clausen, A.; Aage, N.; Sigmund, O., Topology optimization of coated structures and material interface problems, Comput. Methods Appl. Mech. Engrg., 290, 524-541 (2015) · Zbl 1423.74742
[4] Bruns, T. E.; Tortorelli, D. A., Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Engrg., 190, 26-27, 3443-3459 (2001) · Zbl 1014.74057
[5] Sigmund, O., On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach., 25, 4, 493-524 (1997)
[6] Andreasen, C. S.; Sigmund, O., Topology optimization of fluid-structure-interaction problems in poroelasticity, Comput. Methods Appl. Mech. Engrg., 258, 55-62 (2013) · Zbl 1286.74075
[7] Yoon, G. H., Topology optimization for stationary fluid structure interaction problems using a new monolithic formulation, Internat. J. Numer. Methods Engrg., 82, 5, 591-616 (2010) · Zbl 1188.74048
[8] Lundgaard, C.; Alexandersen, J.; Zhou, M.; Andreasen, C. S.; Sigmund, O., Revisiting density-based topology optimization for fluid-structure-interaction problems, Struct. Multidiscip. Optim., 58, 3, 969-995 (2018)
[9] Christiansen, R. E.; Lazarov, B. S.; Jensen, J. S.; Sigmund, O., Creating geometrically robust designs for highly sensitive problems using topology optimization, Struct. Multidiscip. Optim., 52, 4, 737-754 (2015)
[10] Kook, J.; Koo, K.; Hyun, J.; Jensen, J. S.; Wang, S., Acoustical topology optimization for Zwicker’s loudness model—application to noise barriers, Comput. Methods Appl. Mech. Engrg., 237/240, 130-151 (2012) · Zbl 1253.74080
[11] Wadbro, E., Analysis and design of acoustic transition sections for impedance matching and mode conversion, Struct. Multidiscip. Optim., 50, 3, 395-408 (2014)
[12] Wadbro, E.; Engström, C., Topology and shape optimization of plasmonic nano-antennas, Comput. Methods Appl. Mech. Engrg., 293, 155-169 (2015) · Zbl 1423.74765
[13] Erentok, A.; Sigmund, O., Topology optimization of sub-wavelength antennas, IEEE Trans. Antennas and Propagation, 59, 1, 58-69 (2011)
[14] Hassan, E.; Wadbro, E.; Berggren, M., Topology optimization of metallic antennas, IEEE Trans. Antennas and Propagation, 62, 5, 2488-2500 (2014) · Zbl 1370.78251
[15] Bendsøe, M. P.; Sigmund, O., Topology optimization: Theory, Methods, and Applications, xiv+370 (2004), Springer-Verlag, Berlin · Zbl 1059.74001
[16] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1, 1-38 (2014)
[17] Sigmund, O.; Maute, K., Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim., 48, 6, 1031-1055 (2013)
[18] Nitsche, J., Über Ein variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilra̋umen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg., 36, 9-15 (1971) · Zbl 0229.65079
[19] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125
[20] Burman, E., Ghost penalty, C. R. Math. Acad. Sci. Paris, 348, 21-22, 1217-1220 (2010) · Zbl 1204.65142
[21] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62, 4, 328-341 (2012) · Zbl 1316.65099
[22] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 7, 472-501 (2015) · Zbl 1352.65604
[23] Hansbo, P.; Larson, M. G.; Larsson, K., Cut finite element methods for linear elasticity problems, (Geometrically Unfitted Finite Element Methods and Applications. Geometrically Unfitted Finite Element Methods and Applications, Lect. Notes Comput. Sci. Eng., vol. 121 (2017), Springer, Cham), 25-63 · Zbl 1390.74180
[24] Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M. G.; Larsson, K., A cut finite element method for the bernoulli free boundary value problem, Comput. Methods Appl. Mech. Engrg., 317, 598-618 (2017)
[25] Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M. G.; Larsson, K., Shape optimization using the cut finite element method, Comput. Methods Appl. Mech. Engrg., 328, 242-261 (2018)
[26] Villanueva, C. H.; Maute, K., CutFEM topology optimization of 3D laminar incompressible flow problems, Comput. Methods Appl. Mech. Engrg., 320, 444-473 (2017)
[27] Bernland, A.; Wadbro, E.; Berggren, M., Acoustic shape optimization using cut finite elements, Internat. J. Numer. Methods Engrg., 113, 3, 432-449 (2018)
[28] Groen, J. P.; Langelaar, M.; Sigmund, O.; Ruess, M., Higher-order multi-resolution topology optimization using the finite cell method, Internat. J. Numer. Methods Engrg., 110, 10, 903-920 (2017)
[29] Parvizian, J.; Düster, A.; Rank, E., Topology optimization using the finite cell method, Optim. Eng., 13, 1, 57-78 (2012) · Zbl 1293.74357
[30] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[31] Jonsson, T.; Larson, M. G.; Larsson, K., Cut finite element methods for elliptic problems on multipatch parametric surfaces, Comput. Methods Appl. Mech. Engrg., 324, 366-394 (2017)
[32] Elfverson, D.; Larson, M. G.; Larsson, K., CutIGA with basis function removal, Adv. Model. Simul. Eng. Sci., 5, 6, 1-19 (2018)
[33] Elfverson, D.; Larson, M. G.; Larsson, K., A new least squares stabilized Nitsche method for cut isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 349, 1-16 (2019)
[34] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202 (1989)
[35] Zhou, M.; Rozvany, G. I.N., The COC algorithm, Part II: topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Engrg., 89, 1-3, 309-336 (1991)
[36] Li, Q.; Steven, G. P.; Xie, Y. M., A simple checkerboard suppression algorithm for evolutionary structural optimization, Struct. Multidiscip. Optim., 22, 3, 230-239 (2001)
[37] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 4-5, 401-424 (2007)
[38] Bourdin, B., Filters in topology optimization, Internat. J. Numer. Methods Engrg., 50, 9, 2143-2158 (2001) · Zbl 0971.74062
[39] Hägg, L.; Wadbro, E., Nonlinear filters in topology optimization: existence of solutions and efficient implementation for minimum compliance problems, Struct. Multidiscip. Optim., 55, 3, 1017-1028 (2017)
[40] Bendsøe, M. P., Optimization of structural topology, shape, and material, xii+271 (1995), Springer-Verlag, Berlin · Zbl 0822.73001
[41] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1, 1-16 (2011) · Zbl 1274.74310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.