×

zbMATH — the first resource for mathematics

A coupled 3D isogeometric and discrete element approach for modeling interactions between structures and granular matters. (English) Zbl 1441.74240
Summary: A three-dimensional (3D) isogeometric/discrete-element coupling method is presented for modeling contact/impact between structures and particles. This method takes advantages of the geometry smoothness and exactness of isogeometric analysis (IGA) for continuous solid media and the effectiveness and flexibility of the discrete element method (DEM) for particulate matters. The coupling procedure for handling interactions between IGA elements and discrete elements (DEs) includes global search, local search and interaction calculation. In the global search, the CGRID method is modified to detect potential contact pairs between IGA elements and DEs based on their bounding box representations. The strong convex hull property of a NURBS control mesh plays an important part in the bounding box representation of IGA elements. In the local search, the proposed approach treats each spherical DE centroid as a slave node and the contact surface of each IGA element as the master surface. The projection of a DE centroid onto an IGA element contact surface is solved by modifying the simplex method and Brent iterations. The contact force between an IGA element and a DE is determined from their penetration by using a (nonlinear) penalty function based method. The whole coupled system is solved by the explicit time integration within a updated Lagrangian scheme. Finally, three impact examples, including the impact of two symmetric bars, a tube onto a footing strip, and an assembly of granular particles to a tailor rolled blank, are simulated in elastic regime to assess the accuracy and applicability of the proposed method.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74E20 Granularity
Software:
DEMPack
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Munjiza, A. A.; Knight, E. E.; Rougier, E., Computational Mechanics of Discontinua (2011), John Wiley & Sons
[2] Cundall, P. A., (Proceedings of the International Symposium on Rock Mechanics, 1971 (1971), Symp ISRM Proc: Symp ISRM Proc Nancy, France), 129-139
[3] Cundall, P. A.; Strack, O. D., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979)
[4] Potyondy, D. O.; Cundall, P., A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., 41, 8, 1329-1364 (2004)
[5] Gao, W.; Liu, L.; Liao, Z.; Chen, S.; Zang, M.; Tan, Y., Discrete element analysis of the particle mixing performance in a ribbon mixer with a double U-shaped vessel, Granul. Matter, 21, 1, 12 (2019)
[6] Han, K.; Peric, D.; Owen, D.; Yu, J., A combined finite/discrete element simulation of shot peening processes-Part II: 3D interaction laws, Eng. Comput., 17, 6, 680-702 (2000) · Zbl 1112.74516
[7] Munjiza, A. A., The Combined Finite-discrete Element Method (2004), John Wiley & Sons: John Wiley & Sons England · Zbl 1194.74452
[8] Owen, D.; Feng, Y.; de Souza Neto, E.; Cottrell, M.; Wang, F.; Andrade Pires, F.; Yu, J., The modelling of multi-fracturing solids and particulate media, Internat. J. Numer. Methods Engrg., 60, 1, 317-339 (2004) · Zbl 1060.74633
[9] Onate, E.; Rojek, J., Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Comput. Methods Appl. Mech. Engrg., 193, 27-29, 3087-3128 (2004) · Zbl 1079.74646
[10] Xiang, J.; Munjiza, A.; Latham, J.-P., Finite strain, finite rotation quadratic tetrahedral element for the combined finite – discrete element method, Internat. J. Numer. Methods Engrg., 79, 8, 946-978 (2009) · Zbl 1171.74453
[11] Zang, M.; Gao, W.; Lei, Z., A contact algorithm for 3D discrete and finite element contact problems based on penalty function method, Comput. Mech., 48, 5, 541-550 (2011) · Zbl 1384.74048
[12] Dang, H. K.; Meguid, M. A., An efficient finite-discrete element method for quasi-static nonlinear soil-structure interaction problems, Int. J. Numer. Anal. Methods Geomech., 37, 2, 130-149 (2013)
[13] Tran, V.; Meguid, M.; Chouinard, L., A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions, Geotext. Geomembr., 37, 1-9 (2013)
[14] Hu, L.; Hu, G.; Fang, Z.; Zhang, Y., A new algorithm for contact detection between spherical particle and triangulated mesh boundary in discrete element method simulations, Internat. J. Numer. Methods Engrg., 94, 8, 787-804 (2013) · Zbl 1352.74364
[15] Chen, H.; Zhang, Y.; Zang, M.; Hazell, P. J., An accurate and robust contact detection algorithm for particle-solid interaction in combined finite-discrete element analysis, Internat. J. Numer. Methods Engrg., 103, 8, 598-624 (2015) · Zbl 1352.65337
[16] Gao, W.; Tan, Y.; Jiang, S.; Zhang, G.; Zang, M., A virtual-surface contact algorithm for the interaction between FE and spherical DE, Finite Elem. Anal. Des., 108, 32-40 (2016)
[17] Munjiza, A.; Knight, E. E.; Rougier, E., Large Strain Finite Element Method: A Practical Course (2015), John Wiley & Sons · Zbl 1402.74002
[18] Wriggers, P., Computational Contact Mechanics (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1104.74002
[19] Santasusana, M., Numerical techniques for non-linear analysis of structures combining discrete element and finite element methods (2017), Polytechnic University of Catalonia, (Ph.D. thesis)
[21] Feng, Y. T.; Han, K.; Owen, D. R.J., Energy-conserving contact interaction models for arbitrarily shaped discrete elements, Comput. Methods Appl. Mech. Engrg., 205-208, 169-177 (2012) · Zbl 1239.74065
[22] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[23] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[24] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5257-5296 (2006) · Zbl 1119.74024
[25] Phung-Van, P.; Tran, L. V.; Ferreira, A.; Nguyen-Xuan, H.; Abdel-Wahab, M., Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads, Nonlinear Dynam., 87, 2, 879-894 (2017) · Zbl 1372.74058
[26] Nguyen-Thanh, N.; Zhou, K.; Zhuang, X.; Areias, P.; Nguyen-Xuan, H.; Bazilevs, Y.; Rabczuk, T., Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Comput. Methods Appl. Mech. Engrg., 316, 1157-1178 (2017)
[27] Guo, Y.; Heller, J.; Hughes, T. J.; Ruess, M.; Schillinger, D., Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the step exchange format, Comput. Methods Appl. Mech. Engrg., 336, 39-79 (2018)
[28] Kruse, R.; Nguyen-Thanh, N.; Wriggers, P.; De Lorenzis, L., Isogeometric frictionless contact analysis with the third medium method, Comput. Mech., 1-13 (2018) · Zbl 06981046
[29] Bazilevs, Y.; Pigazzini, M.; Ellison, A.; Kim, H., A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear, Comput. Mech., 62, 3, 563-585 (2018) · Zbl 1446.74163
[30] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg., 316, 151-185 (2017)
[31] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations, J. Comput. Phys., 257, 1291-1320 (2014) · Zbl 1351.78036
[32] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the space-time isogeometric analysis (st-iga), Comput. & Fluids, 142, 15-20 (2017) · Zbl 1390.76689
[33] Li, W.; Nguyen-Thanh, N.; Zhou, K., Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach, Comput. Methods Appl. Mech. Engrg., 336, 111-134 (2018)
[34] Chasapi, M.; Klinkel, S., A scaled boundary isogeometric formulation for the elasto-plastic analysis of solids in boundary representation, Comput. Methods Appl. Mech. Engrg., 333, 475-496 (2018)
[35] Chen, L.; Liu, C.; Zhao, W.; Liu, L., An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution, Comput. Methods Appl. Mech. Engrg., 336, 507-532 (2018)
[36] Williams, J. R.; Perkins, E.; Cook, B., A contact algorithm for partitioning N arbitrary sized objects, Eng. Comput., 21, 2/3/4, 235-248 (2004) · Zbl 1062.74671
[37] Han, K.; Feng, Y.; Owen, D., Performance comparisons of tree-based and cell-based contact detection algorithms, Eng. Comput., 24, 2, 165-181 (2007) · Zbl 1198.74118
[38] Moré, J. J.; Cosnard, M. Y., Numerical solution of nonlinear equations, ACM Trans. Math. Softw., 5, 1, 64-85 (1979) · Zbl 0393.65019
[39] Brent, R. P., Some efficient algorithms for solving systems of nonlinear equations, SIAM J. Numer. Anal., 10, 2, 327-344 (1973) · Zbl 0258.65051
[40] Kopaka, J.; Gabriel, D.; Plesek, J.; Ulbin, M., Assessment of methods for computing the closest point projection, penetration, and gap functions in contact searching problems, Internat. J. Numer. Methods Engrg., 105, 11, 803-833 (2016)
[41] Temizer, I.; Wriggers, P.; Hughes, T., Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 9-12, 1100-1112 (2011) · Zbl 1225.74126
[42] Di Renzo, A.; Di Maio, F. P., Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chem. Eng. Sci., 59, 3, 525-541 (2004)
[43] Escotet-Espinoza, M. S.; Foster, C. J.; Ierapetritou, M., Discrete element modeling (DEM) for mixing of cohesive solids in rotating cylinders, Powder Technol., 335, 124-136 (2018)
[44] Zang, M.; Lei, Z.; Wang, S., Investigation of impact fracture behavior of automobile laminated glass by 3D discrete element method, Comput. Mech., 41, 1, 73-83 (2007) · Zbl 1162.74444
[45] Gao, W.; Zang, M., The simulation of laminated glass beam impact problem by developing fracture model of spherical DEM, Eng. Anal. Bound. Elem., 42, 2-7 (2014) · Zbl 1297.74103
[46] Wang, M.; Feng, Y.; Wang, C., Numerical investigation of initiation and propagation of hydraulic fracture using the coupled bonded particle – lattice boltzmann method, Comput. Struct., 181, 32-40 (2017)
[48] Griffiths, D.; Mustoe, G. G., Modelling of elastic continua using a grillage of structural elements based on discrete element concepts, Internat. J. Numer. Methods Engrg., 50, 7, 1759-1775 (2001) · Zbl 1006.74086
[49] Kaixin, L.; Lingtian, G., The application of discrete element method in solving three-dimensional impact dynamics problems, Acta Mech. Solida Sin., 16, 3, 256-261 (2003)
[50] Liu, K.; Liu, W., Application of discrete element method for continuum dynamic problems, Arch. Appl. Mech., 76, 3-4, 229-243 (2006) · Zbl 1161.74522
[51] Gao, W.; Tan, Y.; Zang, M., A cubic arranged spherical discrete element model, Int. J. Comput. Methods, 11, 05, 1350102 (2014) · Zbl 1359.74406
[52] Feng, Y.; Owen, D., An augmented spatial digital tree algorithm for contact detection in computational mechanics, Internat. J. Numer. Methods Engrg., 55, 2, 159-176 (2002) · Zbl 1098.74735
[53] Matzen, M.; Cichosz, T.; Bischoff, M., A point to segment contact formulation for isogeometric, NURBS based finite elements, Comput. Methods Appl. Mech. Engrg., 255, 27-39 (2013) · Zbl 1297.74084
[59] Spendley, W.; Hext, G. R.; Himsworth, F. R., Sequential application of simplex designs in optimisation and evolutionary operation, Technometrics, 4, 4, 441-461 (1962) · Zbl 0121.35603
[60] Zheng, Z.; Zang, M.; Chen, S.; Zhao, C., An improved 3D DEM-FEM contact detection algorithm for the interaction simulations between particles and structures, Powder Technol., 305, 308-322 (2017)
[61] Laursen, T.; Chawla, V., Design of energy conserving algorithms for frictionless dynamic contact problems, Internat. J. Numer. Methods Engrg., 40, 5, 863-886 (1997) · Zbl 0886.73067
[62] Armero, F.; Petőcz, E., Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems, Comput. Methods Appl. Mech. Engrg., 158, 3-4, 269-300 (1998) · Zbl 0954.74055
[63] Gao, W.; Feng, Y., A coupled 3D discrete elements/iso-geometric method for particle/structure interaction problems, Comput. Part. Mech. (2019), (in press)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.