zbMATH — the first resource for mathematics

Weighted Sobolev inequalities and harmonic measure associated with quasiregular functions. (English) Zbl 0719.31002
Let \(U\subset {\mathbb{R}}^ n\) be a bounded domain, \(\phi\) a quasi regular function on U and \(J_{\phi}\) its Jacobian determinant. Then a weighted Sobolev inequality of the form \[ \int_{U}| u(x)|^ 2J_{\phi}(x)dx\quad \leq \quad C\int_{U}| \nabla u(x)|^ 2J_{\phi}^{1-2/n}(x)dx \] for all \(u\in C_ 0^{\infty}(U)\) is derived. The estimate is used to prove existence of the harmonic measure of the diffusion \(X_ t\) associated to \(\phi\). As an application a new result about boundary values of quasi regular functions is proved.
Reviewer: R.Leis (Bonn)

31C15 Potentials and capacities on other spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI
[1] Berg J., Interpolation Spaces
[2] Fabes E. B., Ann.’institute Fourier 32 pp 151– (1982) · Zbl 0488.35034 · doi:10.5802/aif.883
[3] Fabes E. B., Wadsworth Math. Ser. pp 577–
[4] DOI: 10.1080/03605308208820218 · Zbl 0498.35042 · doi:10.1080/03605308208820218
[5] Fukushima M., Dirichlet Forms and Markov Processes · Zbl 0422.31007
[6] Martio O., Ann. Acad.Sci.Fenn.A.I 448 pp 1– (1969)
[7] Øksendal B, Universitext (1989)
[8] DOI: 10.1007/BF01389369 · Zbl 0639.30017 · doi:10.1007/BF01389369
[9] Vaisala L., Proc. ICM Helsinki 91 (1978)
[10] Williams D., Diffusions Markov Processs& Martungales 1 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.