zbMATH — the first resource for mathematics

A mixed variational principle for the Föppl-von Kármán equations. (English) Zbl 07190978
Summary: A mixed variational principle is proposed for deducing the Föppl-von Kármán equations governing the large deflections of thin elastic plates or shallow shells. Proper boundary conditions are found for the case of applied in-plane tractions and displacements, and simple mechanical interpretations are achieved. Numerical implementation is carried out, along with examples and comparisons with the classical formulation in terms of displacements.
74 Mechanics of deformable solids
49 Calculus of variations and optimal control; optimization
Full Text: DOI
[1] A. Föppl, Vorlesungenüber Technische Mechanik, Vol. 5, Oldenbourg.
[2] T. von Kármán, Festigkeitsprobleme im maschinenbau, in: Encyklopädie der Mathematischen Wissenschaften, B.G. Teubner Verlag. pp. 311-385.
[3] S. Antman, Nonlinear Problems of Elasticity, Springer. · Zbl 0820.73002
[4] P. Ciarlet, Mathematical Elasticity: Theory of Plates, North-Holland. · Zbl 0888.73001
[5] Ciarlet, P., A justification of the von Kármán equations, Arch. Ration. Mech. Anal., 73, 349-389 (1980) · Zbl 0443.73034
[6] Friesecke, G.; James, R.; Müller, S., The Föppl-von Kármán plate theory as a low energy Gamma limit of nonlinear elasticity, C. R. Math. Acad. Sci. Paris, 335, 201-206 (2002) · Zbl 1041.74043
[7] Podio-Guidugli, P., A new quasilinear model for plate buckling, J. Elast., 71, 157-182 (2003) · Zbl 1156.74327
[8] Maddalena, F.; Percivale, D.; Tomarelli, F., Variational problems for Föppl-von Kármán plates, SIAM J. Math. Anal., 50, 1, 251-282 (2018) · Zbl 1394.49014
[9] I.I. Vorovich, Nonlinear Theory of Shallow Shells, Springer Science and Business Media. · Zbl 0685.73004
[10] Belgacem, H.; Conti, S.; DeSimone, A.; Müller, S., Energy scaling of compressed elastic films –three-dimensional elasticity and reduced theories, Arch. Ration. Mech. Anal., 164, 1, 1-37 (2002) · Zbl 1041.74048
[11] Cerda, E.; Mahadevan, L., Geometry and physics of wrinkling, Phys. Rev. Lett., 90074302 (2003)
[12] B. Audoly, Y. Pomeau, Elasticity and Geometry, Oxford University Press. · Zbl 1005.74035
[13] Lewicka, M.; Mahadevan, L.; Pakzad, M. R., The Föppl-von Kármán equations for plates with incompatible strains, Proc. R. Soc. A: Math. Phys. Eng. Sci., 467, 2126, 402-426 (2011) · Zbl 1219.74027
[14] Bella, P.; Kohn, R., Coarsening of folds in hanging drapes, Comm. Pure Appl. Math., 70, 978-1021 (2017) · Zbl 1426.74215
[15] Bourne, D. P.; Conti, S.; Müller, S., Energy bounds for a compressed elastic film on a substrate, J. Nonlinear Sci., 27, 2, 453-494 (2017) · Zbl 1387.74069
[16] Davini, C.; Favata, A.; Paroni, R., An atomistic-based Föppl-von Kármán model for graphene, Int. J. Non-Linera Mech., 116, 281-288 (2019)
[17] Alnæs, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FeniCS project version 1.5, Arch. Numer. Softw., 3, 100, 9-23 (2015)
[18] Brenner, S. C.; Neilan, M.; Reiser, A.; Sung, L., A C^0 interior penalty method for a von Kármán plate, Numer. Math., 135, 3, 803-832 (2017) · Zbl 06695818
[19] Pakzad, M. R., On the sobolev space of isometric immersions, J. Differ. Geom., 66, 47-69 (2004) · Zbl 1064.58009
[20] Ciarlet, P.; Mardare, S., Nonlinear saint-venant compatibility conditions for nonlinearly elastic plates, C. R. Math., 349, 23, 1297-1302 (2011) · Zbl 1378.74042
[21] Ciarlet, P.; Geymonat, G.; Krasucki, F., Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff-von Kármán-Love plate theory, C. R. Math., 351, 9, 405-409 (2013) · Zbl 1335.74036
[22] Ciarlet, P.; Mardare, S., Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates, Math. Models Methods Appl. Sci., 23, 12, 2293-2321 (2013) · Zbl 1286.49053
[23] Magisano, D.; Leonetti, L.; Garcea, G., Advantages of the mixed format in geometrically nonlinear analysis of beams and shells using solid finite elements, Int. J. Numer. Methods Eng., 109, 9, 1237-1262 (2017)
[24] M. Giaquinta, S. Hildebrandt, Calculus of Variations I, Springer-Verlag, Berlin, Heidelberg. · Zbl 0853.49002
[25] M. Gurtin, The linear theory of elasticity, in: S. Fluügge (Ed.), Handbuch der Physik VIa/2. B.G. Teubner Verlag. · Zbl 0404.73015
[26] Ciarlet, P.; Gratie, L.; Serpilli, M., Cesàro-Volterra path integral formula on a surface, Math. Models Methods Appl. Sci., 19, 03, 419-441 (2009) · Zbl 1173.53004
[27] 89-101 · Zbl 0948.65127
[28] Brenner, S.; Sung, L., C^0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22, 83-118 (2005) · Zbl 1071.65151
[29] Hale, J. S.; Brunetti, M.; Bordas, S. P.A.; Maurini, C., Simple and extensible plate and shell finite element models through automatic code generation tools, Comput. Struct., 209, 163-181 (2018)
[30] Vidoli, S., Discrete approximations of the Föppl-von Kármán shell model: from coarse to more refined models, Int. J. Solids Struct., 50, 9, 1241-1252 (2013)
[31] Pingaro, M.; Reccia, E.; Trovalusci, P.; Masiani, R., Fast statistical homogenization procedure (fshp) for particle random composites using virtual element method, Comput. Mech., 64, 197-210 (2019) · Zbl 07073974
[32] L. Li, Regge Finite Elements with Applications in Solid Mechanics and Relativity, Ph.D. thesis Univerity of Minnesota, 2018.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.