zbMATH — the first resource for mathematics

Modelling of the turbulent burning velocity based on Lagrangian statistics of propagating surfaces. (English) Zbl 1460.76576
Summary: We propose a predictive model of the turbulent burning velocity \(S_T\) in homogeneous isotropic turbulence (HIT) based on Lagrangian statistics of propagating surfaces. The propagating surfaces with a constant displacement speed are initially arranged on a plane, and they evolve in non-reacting HIT, behaving like the propagation of a planar premixed flame front. The universal constants in the model of \(S_T\) characterize the enhancement of area growth of premixed flames by turbulence, and they are determined by Lagrangian statistics of propagating surfaces. The flame area is then modelled by the area of the propagating surfaces at a truncation time. This truncation time signals the statistical stationary state of the evolutionary geometry of the propagating surfaces, and it is modelled by an explicit expression using limiting conditions of very weak and strong turbulence. Another parameter in the model of \(S_T\) characterizes the effect of fuel chemistry on \(S_T\), and it is pre-determined by the very few available data points of \(S_T\) from experiments or direct numerical simulation (DNS) in weak turbulence. The proposed model is validated using three DNS series of turbulent premixed flames with various fuels. The model prediction of \(S_T\) generally agrees well with DNS in a wide range of premixed combustion regimes, and it captures the basic trends of \(S_T\) in terms of the turbulence intensity, including the linear growth in weak turbulence and the ‘bending effect’ in strong turbulence.
76F80 Turbulent combustion; reactive turbulence
76V05 Reaction effects in flows
Full Text: DOI
[1] Aspden, A., Bell, J., Day, M. & Egolfopoulos, F.2017Turbulence-flame interactions in lean premixed dodecane flames. Proc. Combust. Inst.36, 2005-2016.
[2] Aspden, A. J., Day, M. S. & Bell, J. B.2011Turbulene-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech.680, 287-320. · Zbl 1241.76435
[3] Batchelor, G. K.1952The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. Lond. A213, 349-366. · Zbl 0046.42201
[4] Bell, J. B., Day, M. S. & Grcar, J. F.2002Numerical simulation of premixed turbulent methane combustion. Proc. Combust. Inst.29, 1987-1993.
[5] Bell, J. B., Day, M. S., Grcar, J. F. & Lijewski, M. J.2006Active control for statistically stationary turbulent premixed flame simulations. Commun. Appl. Math. Comput. Sci.1, 29-51. · Zbl 1121.80008
[6] Bell, J. B., Day, M. S. & Lijewski, M. J.2013Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner. Proc. Combust. Inst.34, 1173-1182.
[7] Bell, J. B., Day, M. S., Shepherd, I. G., Johnson, M. R., Cheng, R. K., Grcar, J. F., Beckner, V. E. & Lijewski, M. J.2005Numerical simulation of a laboratory scale turbulent V-flame. Proc. Natl Acad. Sci. USA102, 10006-10011.
[8] Bobbitt, B., Lapointe, S. & Blanquart, G.2016Vorticity transformation in high Karlovitz number premixed flames. Phys. Fluids28, 205101.
[9] Bradley, D.1992How fast can we burn?Proc. Combust. Inst.24, 247-262.
[10] Bradley, D., Lawes, M., Liu, K. & Mansour, M. S.2013Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst.34, 1519-1526.
[11] Brown, P. N., Byrne, G. D. & Hindmarsh, A. C.1989VODE: a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput.10, 1038-1051. · Zbl 0677.65075
[12] Candel, S. M. & Poinsot, T.1990Flame stretch and the balance equation for the flame area. Combust. Sci. Technol.70, 1-15.
[13] Carroll, P. L. & Blanquart, G.2013A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids25, 105114.
[14] Chakraborty, N. & Cant, R. S.2005Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids17, 065108. · Zbl 1187.76087
[15] Chaudhuri, S.2015Life of flame particles embedded in premixed flames interacting with isotropic turbulence. Proc. Combust. Inst.35, 1305-1312.
[16] Creta, F. & Matalon, M.2011Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech.680, 225-264. · Zbl 1241.76437
[17] Damköhler, G.1940The effect of turbulence on the flame velocities in gas mixtures. Z. Elektrochem. Angew. Phys. Chem.46, 601-626.
[18] Dave, H. L., Mohan, A. & Chaudhuri, S.2018Genesis and evolution of premixed flames in turbulence. Combust. Flame196, 386-399.
[19] Davis, S. G. & Searby, G.2002The use of counterflow flames for the evaluation of burning velocities and stretch effects in hydrogen/air mixtures. Combust. Sci. Technol.174, 93-110.
[20] Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V. & Cheng, R. K.2015A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: II. Hydrogen flames. Combust. Flame162, 2148-2165.
[21] Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H.2008High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys.227, 7125-7159. · Zbl 1201.76139
[22] Driscoll, J. F.2008Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci.34, 91-134.
[23] Fogla, N., Creta, F. & Matalon, M.2015Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame162, 2758-2777.
[24] Fureby, C.2005A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst.30, 593-601.
[25] Girimaji, S. S.1991Asymptotic behavior of curvature of surface elements in isotropic turbulence. Phys. Fluids A3, 1772-1777. · Zbl 0745.76024
[26] Girimaji, S. S. & Pope, S. B.1990Material-element deformation in isotropic turbulence. J. Fluid Mech.220, 427-458.
[27] Girimaji, S. S. & Pope, S. B.1992Propagating surfaces in isotropic turbulence. J. Fluid Mech.234, 247-277. · Zbl 0744.76063
[28] Goto, S. & Kida, S.2007Reynolds-number dependence of line and surface stretching in turbulence: folding effects. J. Fluid Mech.586, 59-81. · Zbl 1120.76024
[29] Gouldin, F. C.1987An application of fractals to modeling premixed turbulent flames. Combust. Flame68, 249-266.
[30] Hamlington, P. E., Darragh, R., Briner, C. A., Towery, C. A. Z., Taylor, B. D. & Poludnenko, A. Y.2017Lagrangian analysis of high-speed turbulent premixed reacting flows: thermochemical trajectories in hydrogen-air flames. Combust. Flame186, 193-207.
[31] Hawkes, E. R. & Chen, J. H.2006Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations. Combust. Flame144, 112-125.
[32] He, G., Jin, G. & Yang, Y.2017Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech.49, 51-71.
[33] Herrmann, M., Blanquart, G. & Raman, V.2006Flux corrected finite volume scheme for preserving scalar boundedness in reacting large-eddy simulations. AIAA J.44, 2879-2886.
[34] Karpov, V. P. & Severin, E. S.1978Turbulent burn-up rates of propane-air flames determined in a bomb with agitators. Combust. Explos. Shock Waves14, 158-163.
[35] Karpov, V. P. & Severin, E. S.1980Effects of molecular-transport coefficients on the rate of turbulent combustion. Combust. Explos. Shock Waves16, 45-51.
[36] Kawanabe, H., Shioji, M., Tsunooka, T. & Ali, Y.1998CFD simulation for predicting combustion and pollutant formation in a homogeneous-charge spark-ignition engine. In COMODIA98 Tokyo: JSME, pp. 287-292.
[37] Kee, R. J., Grcar, J., Smooke, M. & Miller, J. A.1985 PREMIX: a FORTRAN program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. SAND85-8240, Sandia National Laboratories.
[38] Kee, R. J., Rupley, F. M., Meeks, E. & Miller, J. A.1996 CHEMKIN-III: A fortran chemical kinetic package for the analysis of gas-phase chemical and plasma kinetics. Tech. Rep. SAND96-8216, Sandia National Laboratories.
[39] Kerstein, A. R.1988Similar derivation of Yakhot’s turbulent premixed flame speed formula. Combust. Sci. Technol.60, 163-165.
[40] Klimov, A. M.1983Premixed turbulent flames-interplay of hydrodynamic and chemical phenomena. Prog. Astronaut. Aeronaut.88, 133.
[41] Launder, B. E., Reece, G. J. & Rodi, W.1975Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech.68, 537-566. · Zbl 0301.76030
[42] Lee, D. & Huh, K. Y.2010Statistically steady incompressible DNS to validate a new correlation for turbulent burning velocity in turbulent premixed combustion. Flow Turbul. Combust.84, 339-356. · Zbl 1423.76161
[43] Lee, D. & Huh, K. Y.2012Validation of analytical expressions for turbulent burning velocity in stagnating and freely propagating turbulent premixed flames. Combust. Flame159, 1576-1591.
[44] Lipatnikov, A.2012Fundamentals of Premixed Turbulent Combustion. CRC Press.
[45] Lipatnikov, A. N. & Chomiak, J.2002Turbulent flame speed and thickness: phenomenology, evaluation and application in multi-dimensional simulations. Prog. Energy Combust. Sci.28, 1-74.
[46] Lu, Z. & Yang, Y.2019 Modeling pressure effects on the turbulent burning velocity for lean hydrogen/air premixed combustion. Preprint, .
[47] Marble, F. E. & Broadwell, J. E.1977 The coherent flame model for turbulent chemical reactions. TRW Report.
[48] Matalon, M.2009Flame dynamics. Proc. Combust. Inst.32, 57-82.
[49] Minamoto, Y., Yenerdag, B. & Tanahashi, M.2018Morphology and structure of hydrogen-air turbulent premixed flames. Combust. Flame192, 369-383.
[50] Nivarti, G. V. & Cant, R. S.2017Direct numerical simulation of the bending effect in turbulent premixed flames. Proc. Combust. Inst.36, 1903-1910.
[51] Nivarti, G. V., Cant, R. S. & Hochgreb, S.2019Reconciling turbulent burning velocity with flame surface area in small-scale turbulence. J. Fluid Mech.858, R4. · Zbl 1415.76746
[52] Peters, N.1999The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech.384, 107-132. · Zbl 0948.76087
[53] Peters, N.2000Turbulent Combustion. Cambridge University Press. · Zbl 0955.76002
[54] Pierce, C. D.2001 Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Stanford University.
[55] Pope, S. B.1988The evolution of surfaces in turbulence. Intl J. Engng Sci.26, 445-469. · Zbl 0641.76054
[56] Pope, S. B.2000Turbulent Flows. Cambridge University Press.
[57] Sabelnikov, V. A. & Lipatnikov, A. N.2017Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Annu. Rev. Fluid Mech.49, 91-117. · Zbl 1359.76326
[58] Savard, B. & Blanquart, G.2015Broken reaction zone and differential diffusion effects in high Karlovitz n‐C_7H_16 premixed turbulent flames. Combust. Flame162, 2020-2033.
[59] Savard, B., Bobbitt, B. & Blanquart, G.2015Structure of a high Karlovitz n‐C_7H_16 premixed turbulent flame. Proc. Combust. Inst.35, 1377-1384.
[60] Skiba, A. W., Wabel, T. M., Carter, C. D., Hammack, S. D., Temme, J. E. & Driscoll, J. F.2018Premixed flames subjected to extreme levels of turbulence part I: flame structure and a new measured regime diagram. Combust. Flame189, 407-432.
[61] Steinberg, A. M., Coriton, B. & Frank, J. H.2015Influence of combustion on principal strain-rate transport in turbulent premixed flames. Proc. Combust. Inst.35, 1287-1294.
[62] Tamadonfar, P. & Gülder, Ö. L.2015Experimental investigation of the inner structure of premixed turbulent methane/air flames in the thin reaction zones regime. Combust. Flame162, 115-128.
[63] Tanahashi, M., Fujimura, M. & Miyauchi, T.2000Coherent fine-scale eddies in turbulent premixed flames. Proc. Combust. Inst.28, 529-535.
[64] Taylor, G. I.1921Diffusion by continuous movements. Proc. Lond. Math. Soc.20, 196-212.
[65] Thiesset, F., Halter, F., Bariki, C., Lapeyre, C., Chauveau, C., Gökalp, I., Selle, L. & Poinsot, T.2017Isolating strain and curvature effects in premixed flame/vortex interactions. J. Fluid Mech.831, 618-654. · Zbl 1421.80012
[66] Toschi, F. & Bodenschatz, E.2009Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech.41, 375-404. · Zbl 1157.76020
[67] Troiani, G., Creta, F. & Matalon, M.2015Experimental investigation of Darrieus-Landau instability effects on turbulent premixed flames. Proc. Combust. Inst.35, 1451-1459.
[68] Trouvé, A. & Poinsot, T.1994The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech.278, 1-31. · Zbl 0825.76899
[69] Uranakara, H. A., Chaudhuri, S., Dave, H. L., Arias, P. G. & Im, H. G.2016A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame163, 220-240.
[70] Venkateswaran, P., Marshall, A. D., Seitzman, J. M. & Lieuwen, T. C.2014Turbulent consumption speeds of high hydrogen content fuels from 1-20 atm. Trans. ASME J. Engng Gas Turbines Power136, 011504.
[71] Verma, S. & Lipatnikov, A. N.2016Does sensitivity of measured scaling exponents for turbulent burning velocity to flame configuration prove lack of generality of notion of turbulent burning velocity?Combust. Flame173, 77-88.
[72] Veynante, D. & Vervisch, L.2002Turbulent combustion modeling. Prog. Energy Combust. Sci.28, 193-266.
[73] Veynante, R. K. D. & Mebeveau, C.2002A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst.29, 2105-2111.
[74] Wabel, T. M., Skiba, A. W. & Driscoll, J. F.2017Turbulent burning velocity measurements: extended to extreme levels of turbulence. Proc. Combust. Inst.36, 1801-1808.
[75] Wang, H., Hawkes, E. R., Chen, J. H., Zhou, B., Li, Z. S. & Aldén, M.2017aDirect numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. J. Fluid Mech.815, 511-536.
[76] Wang, Z., Magi, V. & Abraham, J.2017bTurbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions. Combust. Flame180, 53-62.
[77] Won, S. H., Windom, B., Jiang, B. & Ju, Y.2014The role of low temperature fuel chemistry on turbulent flame propagation. Combust. Flame161, 475-483.
[78] Yakhot, V.1988Propagation velocity of premixed turbulent flames. Combust. Sci. Technol60, 191-214.
[79] Yang, Y., Pullin, D. I. & Bermejo-Moreno, I.2010Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. J. Fluid Mech.654, 233-270.
[80] Yeung, P. K.2002Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech.34, 115-142. · Zbl 1047.76027
[81] Yu, R., Bai, X. S. & Lipatnikov, A. N.2015A direct numerical simulation study of interface propagation in homogeneous turbulence. J. Fluid Mech.772, 127-164.
[82] Zheng, T., You, J. & Yang, Y.2017Principal curvatures and area ratio of propagating surfaces in isotropic turbulence. Phys. Rev. Fluids2, 103201.
[83] Zhou, H., You, J., Xiong, S., Yang, Y., Thévenin, D. & Chen, S.2019Interactions between the premixed flame front and the three-dimensional Taylor-Green vortex. Proc. Combust. Inst.37, 2461-2468.
[84] Zimont, V. L. & Mesheriakov, E. A.1988A model of combustion of partially premixed gases. In Structure of Gas Flames. Proceedings of International Colloquium. Part II, pp. 35-43 (in Russian) ITPM.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.