×

Sensitivity analysis methods in the biomedical sciences. (English) Zbl 1437.92063

Summary: Sensitivity analysis is an important part of a mathematical modeller’s toolbox for model analysis. In this review paper, we describe the most frequently used sensitivity techniques, discussing their advantages and limitations, before applying each method to a simple model. Also included is a summary of current software packages, as well as a modeller’s guide for carrying out sensitivity analyses. Finally, we apply the popular Morris and Sobol methods to two models with biomedical applications, with the intention of providing a deeper understanding behind both the principles of these methods and the presentation of their results.

MSC:

92C50 Medical applications (general)
62P10 Applications of statistics to biology and medical sciences; meta analysis
92-02 Research exposition (monographs, survey articles) pertaining to biology
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Updated 2019
[2] Almeida, S.; Holcombe, E. A.; Pianosi, F.; Wagener, T., Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change, Nat. Hazards Earth Syst. Sci., 17, 2, 225-241 (2017)
[3] Andersson, J.; Akesson, J.; Diehl, M., CasADi: a symbolic package for automatic differentiation and optimal control, Recent Advances in Algorithmic Differentiation, 297-307 (2012), Springer: Springer Berlin, Heidelberg · Zbl 1251.65020
[4] Archer, G. E.B.; Saltelli, A.; Sobol, I. M., Sensitivity measures, anova-like techniques and the use of bootstrap, J. Stat. Comput. Simul., 58, 2, 99-120 (1997) · Zbl 1102.62335
[5] Atherton, R. W.; Schainker, R. B.; Ducot, E. R., On the statistical sensitivity analysis of models for chemical kinetics, AIChE J., 21, 3, 441-448 (1975)
[6] Aven, T.; Nøkland, T. E., On the use of uncertainty importance measures in reliability and risk analysis, Reliab. Eng. Syst. Saf., 95, 2, 127-133 (2010)
[7] Banks, H. T.; Davidian, M.; Samuels, J. R.; Sutton, K. L., An inverse problem statistical methodology summary, Mathematical and Statistical Estimation Approaches in Epidemiology, 249-302 (2009), Springer: Springer Dordrecht · Zbl 1345.92006
[8] Banks, H. T.; Dediu, S.; Ernstberger, S. L., Sensitivity functions and their uses in inverse problems, J. Inverse Ill-posed Probl., 15, 7, 683-708 (2007) · Zbl 1141.34049
[9] Banks, H. T.; Ernstberger, S. L.; Grove, S. L., Standard errors and confidence intervals in inverse problems: sensitivity and associated pitfalls, J. Inverse Ill-posed Probl., 15, 1, 1-18 (2007) · Zbl 1124.34002
[10] Banks, H. T.; Lloyd, A.; Bettencourt, L.; Castillo-Chavez, C.; Cintrón-Arias, A., The estimation of the effective reproductive number from disease outbreak data, Math. Biosci. Eng., 6, 2, 261-282 (2009) · Zbl 1166.62080
[11] Barry, T. M., Recommendations on the testing and use of pseudo-random number generators used in monte carlo analysis for risk assessment, Risk Anal., 16, 1, 93-105 (1996)
[12] Baumuratova, T.; Dobre, S.; Bastogne, T.; Sauter, T., Switch of sensitivity dynamics revealed with DyGlo SA toolbox for dynamical global sensitivity analysis as an early warning for system’s critical transition, PLoS ONE, 8, 12, e82973 (2013)
[13] I., J. B., A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking, J. Sens. Stud., 27, 2, 87-101 (2012)
[14] 13 Suppl 17(Suppl 17):S21-S21,.
[15] Bland, M., An Introduction to Medical Statistics (2015), Oxford University Press · Zbl 1329.92002
[16] Blower, S. M.; Dowlatabadi, H., Sensitivity and uncertainty analysis of complex models of disease transmission: an hiv model, as an example, Int. Stat. Rev. Revue Int. Stat., 62, 2, 229-243 (1994) · Zbl 0825.62860
[17] Borgonovo, E., A new uncertainty importance measure, Reliab. Eng. Syst. Saf., 92, 6, 771-784 (2007)
[18] Borgonovo, E.; Plischke, E., Sensitivity analysis: a review of recent advances, Eur. J. Oper. Res., 248, 869-887 (2016) · Zbl 1346.90771
[19] Brittan, M.; Wright, N. A., Stem cell in gastrointestinal structure and neoplastic development, Gut, 53, 6, 899-910 (2004)
[20] Butler, M. P.; Reed, P. M.; Fisher-Vanden, K.; Keller, K.; Wagener, T., Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis, Environ. Model. Softw.,, 59, 10-29 (2014)
[21] Calabrese, P.; Shibata, D., A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates, BMC Cancer, 10, 1 (2010)
[22] Campolongo, F.; Cariboni, J.; Saltelli, A., An effective screening design for sensitivity analysis of large models, Environ. Model. Softw. (2007)
[23] Campolongo, F.; Cariboni, J.; Saltelli, A.; Schoutens, W., Enhancing the Morris Method (2005), Joint Research Centre, Technical report
[24] Campolongo, F.; Saltelli, A.; Cariboni, J., From screening to quantitative sensitivity analysis. a unified approach, Comput. Phys. Commun., 182, 978-988 (2011) · Zbl 1219.93120
[25] Capaldi, A.; Behrend, S.; Berman, B.; Smith, J.; Wright, J.; Lloyd, A. L., Parameter estimation and uncertainty quantification for an epidemic model, Math. Biosci. Eng., 9, 3, 553-576 (2012) · Zbl 1260.62085
[26] Chan, K.; Saltelli, A.; Tarantola, S., Winding stairs: a sampling tool to compute sensitivity indices, Stat. Comput., 10, 3, 187-196 (2000)
[27] Cintron-Arias, A.; Banks, H. T.; Capaldi, A.; Lloyd, A. L., A sensitivity matrix based methodology for inverse problem formulation, J. Inverse Ill-Posed Probl., 17, 545-564 (2009) · Zbl 1179.34008
[28] Cousin, A.; Janon, A.; Maume-Deschamps, V.; Niang, I., On the consistency of Sobol indices with respect to stochastic ordering of model parameters, ESAIM Probab. Stat., 23, 387-408 (2019) · Zbl 1421.62053
[29] Crosetto, M.; Tarantola, S.; Saltelli, A., Sensitivity and uncertainty analysis in spatial modelling based on GIS, Agric. Ecosyst. Environ., 81, 1, 71-79 (2000)
[30] Cukier, R. I.; Fortuin, C. M.; Shuler, K. E.; Petschek, A. G.; Schaibly, J. H., Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I theory, J. Chem. Phys., 59, 8, 3873-3878 (1973)
[31] Cukier, R. I.; Schaibly, J. H.; Shuler, K. E.; Analysis, I., Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II of the approximations, J. Chem. Phys., 63, 3, 1140-1149 (1975)
[32] Da Veiga, S.; Wahl, F.; Gamboa, F., Local polynomial estimation for sensitivity analysis on models with correlated inputs, Technometrics, 51, 4, 452-463 (2009)
[33] Davidian, M.; Giltinan, D. M., Nonlinear Models for Repeated Measurement Data (1996), Chapman & Hall
[34] Dickinson, R. P.; Gelinas, R. J., Sensitivity analysis of ordinary differential equation systems a direct method, J. Comput. Phys., 21, 2, 123-143 (1976) · Zbl 0333.65038
[35] Domijan, M.; Brown, P. E.; Shulgin, B. V.; Rand, D. A., PeTTSy: a computational tool for perturbation analysis of complex systems biology models, BMC Bioinform., 17, 1, 124 (2016)
[36] Domijan, M.; Murray, R.; Sneyd, J., Dynamical probing of the mechanisms underlying calcium oscillations, J. Nonlinear Sci., 16, 5, 483-506 (2006) · Zbl 1103.92014
[37] Dresch, J. M.; Liu, X.; Arnosti, D. N.; Ay, A., Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects, BMC Syst. Biol., 4, 1, 142 (2010)
[38] Efron, B.; Tibshirani, R., An Introduction to the Bootstrap (1994), Chapman & Hall
[39] Eschenbach, T. G., Spiderplots versus tornado diagrams for sensitivity analysis, Interfaces, 22, 6, 40-46 (1992)
[40] Eslami, M., Theory of Sensitivity in Dynamic Systems (1994), Springer-Verlag
[41] Fagan, S. C.; Morgenstern, L. B.; Petitta, A.; Ward, R. E.; Tilley, B. C.; Marler, J. R.; Levine, S. R.; Broderick, J. P.; Kwiatkowski, T. G.; Frankel, M.; Brott, T. G.; Walker, M. D.; Group*, T. N.r.-P. S.S., Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke. NINDS rt-PA stroke study group, Neurology, 50, 4, 883-890 (1998)
[42] Fishman, G. S., Monte Carlo : Concepts, Algorithms, and Applications (1996), Springer: Springer New York · Zbl 0859.65001
[43] Forrester, A. I.J.; Sobester, A.; Keane, A. J., Engineering Design Via Surrogate Modelling : A Practical Guide (2008), John and Wiley
[44] Gan, Y.; Duan, Q.; Gong, W.; Tong, C.; Sun, Y.; Chu, W.; Ye, A.; Miao, C.; Di, Z., A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model, Environ. Model. Softw., 51, 269-285 (2014)
[45] Geris, L.; Gomez-Cabrero, D., Uncertainty in Biology: A Computational Modelling Approach (2016), Springer · Zbl 1325.92003
[46] Griewank, A., On automatic differentiation, Mathematical Programming: Recent developments and applications, 83-108 (1989)
[47] Grömping, U., Estimators of relative importance in linear regression based on variance decomposition, Am. Stat., 61, 2, 139-147 (2007)
[48] Guerra, O. J.; Calderón, A. J.; Papageorgiou, L. G.; Reklaitis, G. V., Integrated shale gas supply chain design and water management under uncertainty, AIChE J., 65, 3, 924-936 (2018)
[49] Gutenkunst, R. N.; Waterfall, J. J.; Casey, F. P.; Brown, K. S.; Myers, C. R.; Sethna, J. P., Universally sloppy parameter sensitivities in systems biology models, PLoS Comput. Biol., 3, 10, 1871-1878 (2007)
[50] Haftka, R. T.; Adelman, H. M., Recent developments in structural sensitivity analysis, Struct. Multidiscip. Optim., 1, 3, 137-151 (1989)
[51] Hall, S. K.; Ooi, E. H.; Payne, S. J., Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation, Int. J. Hyperth., 31, 5, 538-550 (2015)
[52] Hamby, D. M., A review of techniques for parameter sensitivity analysis of environmental models, Environ. Monit. Assess., 32, 135-154 (1994)
[53] Hart, J. L.; Alexanderian, A.; Gremaud, P. A., Efficient computation of Sobol’ indices for stochastic models, SIAM J. Sci. Comput., 39, 4, A1514-A1530 (2017) · Zbl 1371.60094
[54] Hart, J. L.; Bessac, J.; Constantinescu, E. M., Global sensitivity analysis for statistical model parameters, SIAM/ASA J. Uncertain. Quantif., 7, 1, 67-92 (2019) · Zbl 1409.62113
[55] J.L. Hart, P. Gremaud, Robustness of the Sobol’ Indices to Distributional Uncertainty, arXiv:1803.11249(2018a). · Zbl 07118428
[56] J.L. Hart, P. Gremaud, Robustness of the Sobol’ Indices to Marginal Distribution Uncertainty, arXiv:1812.07042(2018b). · Zbl 07118428
[57] Hart, J. L.; Gremaud, P. A.; David, T., Global sensitivity analysis of high-dimensional neuroscience models: an example of neurovascular coupling, Bull. Math. Biol., 81, 6, 1805-1828 (2019) · Zbl 1415.92072
[58] Helton, J. C., Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal, Reliab. Eng. Syst. Saf., 42, 327-367 (1993)
[59] Helton, J. C.; Davis, F. J., Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab. Eng. Syst. Saf., 81, 1, 23-69 (2003)
[60] Helton, J. C.; Johnson, J. D.; Sallaberry, C. J.; Storlie, C. B., Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliab. Eng. Syst. Saf., 91, 10-11, 1175-1209 (2006)
[61] Herman, J.; Usher, W., SALib: an open-source python library for sensitivity analysis, J. Open Source Softw. (2017)
[62] Hoare, A.; Regan, D. G.; Wilson, D. P., Sampling and sensitivity analyses tools (saSAT) for computational modelling, Theor. Biol. Med. Model., 5, 1, 4 (2008)
[63] Homma, T.; Saltelli, A., Importance measures in global sensitivity analysis of nonlinear models, Reliab. Eng. Syst. Saf., 52, 1-17 (1996)
[64] Hopfe, C. J.; Hensen, J. L.M., Uncertainty analysis in building performance simulation for design support, Energy Build., 43, 10, 2798-2805 (2011)
[65] Howard, R. A., Decision analysis: Practice and promise, Manag. Sci., 34, 6, 679-695 (1988)
[66] Hwang, D.; Byun, D. W.; Talat Odman, M., An automatic differentiation technique for sensitivity analysis of numerical advection schemes in air quality models, Atmos. Environ., 31, 6, 879-888 (1997)
[67] Hwang, J. T.; Dougherty, E. P.; Rabitz, S.; Rabitz, H., The Green’s function method of sensitivity analysis in chemical kinetics, J. Chem. Phys., 69, 5180-5191 (1978)
[68] Iman, R. L., Statistical methods for including uncertainties associated with the geologic isolation of radioactive waste which allow for a comparison with licensing criteria, (Kocher, D. C., Proceedings of the Symposium on Uncertainties Associated with the Reg (1982))
[69] Iman, R. L.; Helton, J. C.; Campbell, J. E., An approach to sensitivity analysis of computer models: Part I introduction, input variable selection and preliminary variable assessment, J. Qual. Technol., 13, 3, 174-183 (1981)
[70] Iman, R. L.; Hora, S. C., A robust measure of uncertainty importance for use in fault tree system analysis, Risk Anal., 10, 3, 401-406 (1990)
[71] Iman, R. L.; Shortencarier, M. J.; Johnson, J. D., A FORTRAN 77 Program and User’s Guide for the Calculation of Partial Correlation and Standardized Regression Coefficients (1984), Sandia National Laboratories: Sandia National Laboratories Albuquerque, Technical Report
[72] Iooss, B.; Lemaitre, P., A review on global sensitivity analysis methods, Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications., 101-122 (2015), Springer: Springer Boston, MA
[73] Iott, J.; Haftka, R. T.; Adelman, H. M., Selecting Step Sizes in Sensitivity Analysis (1985), NASA, Technical Report
[74] Jacques, J.; Lavergne, C.; Devictor, N., Sensitivity analysis in presence of model uncertainty and correlated inputs, Reliab. Eng. Syst. Saf., 91, 10-11, 1126-1134 (2006)
[75] Jansen, M. J.W., Analysis of variance designs for model output, Comput. Phys. Commun., 117, 1-2, 35-43 (1999) · Zbl 1015.68218
[76] Jansen, M. J.W.; Rossing, W. A.H.; Daamen, R. A., Monte carlo estimation of uncertainty contributions from several independent multivariate sources, Predictability and Nonlinear Modelling in Natural Sciences and Economics, 334-343 (1994), Springer: Springer Netherlands, Dordrecht · Zbl 0875.65019
[77] Jarrett, A. M.; Cogan, N. G.; Hussaini, M. Y., Combining two methods of global sensitivity analysis to investigate MRSA nasal carriage model, Bull. Math. Biol., 79, 10, 2258-2272 (2017) · Zbl 1378.92042
[78] Jarrett, A. M.; Gao, Y.; Hussaini, M. Y.; Cogan, N. G.; Katz, D. F., Sensitivity analysis of a pharmacokinetic model of vaginal anti-HIV microbicide drug delivery, J. Pharm. Sci., 105, 5, 1772-1778 (2016)
[79] Johnston, M. D.; Edwards, C. M.; Bodmer, W. F.; Maini, P. K.; Chapman, S. J., Examples of mathematical modeling: tales from the crypt, Cell Cycle, 6, 17, 2106-2112 (2007)
[80] Johnston, M. D.; Edwards, C. M.; Bodmer, W. F.; Maini, P. K.; Chapman, S. J., Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer, Proc. Natl. Acad. Sci. USA, 104, 10, 4008-4013 (2007)
[81] Jones, S.; Zhang, X.; Parsons, D. W.; Lin, J. C.-H.; Leary, R. J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; Hong, S.-M.; Fu, B.; Lin, M.-T.; Calhoun, E. S.; Kamiyama, M.; Walter, K.; Nikolskaya, T.; Nikolsky, Y.; Hartigan, J.; Smith, D. R.; Hidalgo, M.; Leach, S. D.; Klein, A. P.; Jaffee, E. M.; Goggins, M.; Maitra, A.; Iacobuzio-Donahue, C.; Eshleman, J. R.; Kern, S. E.; Hruban, R. H.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V. E.; Kinzler, K. W., Core signaling pathways in human pancreatic cancers revealed by global genomic analyses, Science, 321, 5897, 1801-1806 (2008)
[82] Keener, J. P.; Sneyd, J., Mathematical Physiology (2009), Springer · Zbl 1273.92018
[83] Kiparissides, A.; Kucherenko, S. S.; Mantalaris, A.; Pistikopoulos, E. N., Global sensitivity analysis challenges in biological systems modeling, Ind. Eng. Chem. Res., 48, 15, 7168-7180 (2009)
[84] Kiparissides, A.; Kucherenko, S. S.; Mantalaris, A.; Pistikopoulos, E. N., Global sensitivity analysis challenges in biological systems modeling, Ind. Eng. Chem. Res., 48, 15, 7168-7180 (2009)
[85] H. Kitano, Computational Systems Biology, Nature 420 (2002) 206-210.
[86] Kitano, H., Systems biology: a brief overview, Science, 295, 5560, 1662-1664 (2002)
[87] Kleijnen, J. P.C.; Helton, J. C., Statistical analyses of scatterplots to identify important factors in large-scale simulations, 1: review and comparison of techniques, Reliab. Eng. Syst. Saf., 65, 2, 147-185 (1999)
[88] Koleva, M. N.; Calderón, A. J.; Zhang, D.; Styan, C. A.; Papageorgiou, L. G., Integration of environmental aspects in modelling and optimisation of water supply chains, Sci. Total Environ., 636, 314-338 (2018)
[89] Kramer, M. A.; Calo, J. M.; Rabitz, H., An improved computational method for sensitivity analysis: Green’s function method with AIM’, Appl. Math. Model., 5, 6, 432-441 (1981) · Zbl 0469.65049
[90] Kucherenko, S.; Iooss, B., Derivative-based global sensitivity measures, Handbook of Uncertainty Quantification, 1-24 (2015), Springer International Publishing: Springer International Publishing Cham
[91] Kucherenko, S.; Rodriguez-Fernandez, M.; Pantelides, C.; Shah, N., Monte Carlo evaluation of derivative-based global sensitivity measures, Reliab. Eng. Syst. Saf., 94, 1135-1148 (2009)
[92] Kucherenko, S.; Tarantola, S.; Annoni, P., Estimation of global sensitivity indices for models with dependent variables, Comput. Phys. Commun., 183, 4, 937-946 (2012) · Zbl 1261.62062
[93] S. Kucherenko, O. Zaccheus, SobolGSA, [https://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/].
[94] Laranjeira, S.; Regan-Komito, D.; Iqbal, A. J.; Greaves, D. R.; Payne, S. J.; Orlowski, P., A model for the optimization of anti-inflammatory treatment with chemerin, Interface Focus, 8, 1, 20170007 (2018)
[95] Laranjeira, S.; Symmonds, M.; Palace, J.; Payne, S. J.; Orlowski, P., A mathematical model of cellular swelling in neuromyelitis optica, J. Theor. Biol., 433, 39-48 (2017) · Zbl 1393.92022
[96] Lee, S.-J.; Yun, C. C., Colorectal cancer cells - proliferation, survival and invasion by lysophosphatidic acid, Int. J. Biochem. Cell Biol., 42, 12, 1907-1910 (2010)
[97] Lemieux, C., Monte carlo and Quasi-Monte Carlo Sampling (2009), Springer · Zbl 1269.65001
[98] Lillacci, G.; Khammash, M., Parameter estimation and model selection in computational biology, PLOS Computat. Biol., 6, 3, 1-17 (2010)
[99] Link, K. G.; Stobb, M. T.; Di Paola, J.; Neeves, K. B.; Fogelson, A. L.; Sindi, S. S.; Leiderman, K., A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow, PLOS ONE, 13, 7, 1-38 (2018)
[100] Lipniacki, T.; Paszek, P.; Brasier, A. R.; Luxon, B. A.; Kimmel, M., Stochastic regulation in early immune response, Biophys. J., 90, 3, 725-742 (2006)
[101] Mack, S. G.; Cook, D. J.; Dhurjati, P.; Butchbach, M. E.R., Systems biology investigation of cAMP modulation to increase SMN levels for the treatment of spinal muscular atrophy, PLoS ONE, 9, 12, E115473 (2014)
[102] Mader, G.; Olufsen, M.; Mahdi, A., Modeling cerebral blood flow velocity during orthostatic stress, Ann. Biomed. Eng., 43, 8, 1748-1758 (2015)
[103] Maerkl, S. J.; Quake, S. R., A systems approach to measuring the binding energy landscapes of transcription factors, Science, 315, 5809, 233-237 (2007)
[104] Mahadevia, P. J.; Fleisher, L. A.; Frick, K. D.; Eng, J.; Goodman, S. N.; Powe, N. R., Lung cancer screening with helical computed tomography in older adult smokers, JAMA, 289, 3, 313 (2003)
[105] Mahdi, A.; Ferragut, A.; Valls, C.; Wiuf, C., Conservation laws in biochemical reaction networks, SIAM J. Appl. Dyn. Syst., 16, 4 (2017) · Zbl 1387.37077
[106] Mahdi, A.; Meshkat, N.; Sullivant, S., Structural identifiability of viscoelastic mechanical systems, PLoS ONE, 9, 2 (2014)
[107] Mahdi, A.; Sturdy, J.; Ottesen, J. T.; Olufsen, M. S., Modeling the afferent dynamics of the baroreflex control system, PLOS Comput. Biol., 9, 12, 1-18 (2013)
[108] Marino, S.; Hogue, I. B.; Ray, C. J.; Kirschner, D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254, 1, 178-196 (2008) · Zbl 1400.92013
[109] McKay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239 (1979) · Zbl 0415.62011
[110] McRae, G. J.; Tilden, J. W.; Seinfeld, J. H., Global sensitivity analysis a computational implementation of the fourier amplitude sensitivity test (FAST), Comput. Chem. Eng., 6, 1, 15-25 (1982)
[111] Miao, H.; Xia, X.; Perelson, A. S.; Wu, H., On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev., 53, 1, 3-39 (2011) · Zbl 1215.34015
[112] Morris, M. D., Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 2, 161-174 (1991)
[113] Myers, R. H., Classical and Modern Regression With Applications (1990), Duxbury Press
[114] Niederreiter, H., Quasi-monte carlo methods and pseudo-random numbers, Bull. Am. Math. Soc., 84, 6, 957-1042 (1978) · Zbl 0404.65003
[115] Norton, J. P., Algebraic sensitivity analysis of environmental models, Environ. Model. Softw., 23, 8, 963-972 (2008)
[116] Nossent, J.; Elsen, P.; Bauwens, W., Sobol’ sensitivity analysis of a complex environmental model, Environ. Model. Softw., 26, 12, 1515-1525 (2011)
[117] Oakley, J. E.; O’Hagan, A., Probabilistic sensitivity analysis of complex models: a Bayesian approach, J. R. Stat. Soc. Ser. B, 66, 3, 751-769 (2004) · Zbl 1046.62027
[118] Ojeda, D.; Le Rolle, V.; Romero-Ugalde, H. M.; Gallet, C.; Bonnet, J.-L.; Henry, C.; Bel, A.; Mabo, P.; Carrault, G.; Hernández, A. I., Sensitivity analysis of vagus nerve stimulation parameters on acute cardiac autonomic responses: chronotropic, inotropic and dromotropic effects, PLOS ONE, 11, 9, e0163734 (2016)
[119] Olsen, C. H.; Ottesen, J. T.; Smith, R. C.; Olufsen, M. S., Parameter subset selection techniques for problems in mathematical biology, Biol. Cybern., 113, 1-2, 121-138 (2019) · Zbl 1411.92143
[120] Olufsen, M. S.; Ottesen, J. T., A practical approach to parameter estimation applied to model predicting heart rate regulation, J. Math. Biol., 67, 39-68 (2013) · Zbl 1267.90148
[121] Owen, A. B., Latin supercube sampling for very high-dimensional simulations, ACM Trans. Model. Comput. Simul., 8, 1, 71-102 (1998) · Zbl 0917.65022
[122] Paleari, L.; Confalonieri, R., Sensitivity analysis of a sensitivity analysis: we are likely overlooking the impact of distributional assumptions, Ecol. Model., 340, 57-63 (2016)
[123] Parsons, D. W.; Jones, S.; Zhang, X.; Lin, J. C.-H.; Leary, R. J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G. L.; Olivi, A.; McLendon, R.; Rasheed, B. A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D. A.; Tekleab, H.; Diaz, L. A.J.; Hartigan, J.; Smith, D. R.; Strausberg, R. L.; Marie, S. K.N.; Shinjo, S. M.O.; Yan, H.; Riggins, G. J.; Bigner, D. D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V. E.; Kinzler, K. W., An integrated genomic analysis of human glioblastoma multiforme, Science, 321, 5897, 1807-1812 (2008)
[124] Pianosi, F.; Beven, K.; Freer, J.; Hall, J. W.; Rougier, J.; Stephenson, D. B.; Wagener, T., Sensitivity analysis of environmental models: a systematic review with practical workflow, Environ. Model. Softw., 79, 214-232 (2016)
[125] Pianosi, F.; Sarrazin, F.; Wagener, T., A matlab toolbox for global sensitivity analysis, Environ. Model. Softw., 70, 80-85 (2015)
[126] Pope, S. R.; Ellwein, L. M.; Zapata, C. L.; Novak, V.; Kelley, C. T.; Olufsen, M. S., Estimation and identification of parameters in a lumped cerebrovascular model, Math. Biosci. Eng. MBE, 6, 1, 93-115 (2009) · Zbl 1159.92025
[127] Preston, S. L.; Wong, W.-M.; Chan, A. O.-O.; Poulsom, R.; Jeffery, R.; Goodlad, R. A.; Mandir, N.; Elia, G.; Novelli, M.; Bodmer, W. F.; Tomlinson, I. P.; Wright, N. A., Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission, Cancer Res., 63, 13, 3819-3825 (2003)
[128] G. Pujol, B. Iooss, A. Janon, CRAN - Package sensitivity, 2014.
[129] Rabitz, H., Systems analysis at the molecular scale, Science, 246, 4927, 221-226 (1989)
[130] Rao, P. V.P. V., Statistical Research Methods in the Life Sciences (1998), Duxbury Press, Pacific Grove: Duxbury Press, Pacific Grove CA
[131] Raue, A.; Steiert, B.; Schelker, M.; Kreutz, C.; Maiwald, T.; Hass, H.; Vanlier, J.; Tönsing, C.; Adlung, L.; Engesser, R.; Mader, W.; Heinemann, T.; Hasenauer, J.; Schilling, M.; Höfer, T.; Klipp, E.; Theis, F.; Klingmüller, U.; Schöberl, B.; Timmer, J., Data2dynamics: a modeling environment tailored to parameter estimation in dynamical systems: Fig. 1, Bioinformatics, 31, 21, 3558-3560 (2015)
[132] Robert, C. P.; Casella, G., Introducing Monte Carlo Methods with R (2010), Springer: Springer New York, New York, NY, 1 edition · Zbl 1196.65025
[133] Rodriguez-Fernandez, M.; Banga, J. R., SensSB: a software toolbox for the development and sensitivity analysis of systems biology models, Bioinformatics, 26, 1675-1676 (2010)
[134] Saccomani, M. P.; Thomaseth, K., Structural vs practical identifiability of nonlinear differential equation models in systems biology, Dynamics of Mathematical Models in Biology, 31-41 (2016), Springer International Publishing: Springer International Publishing Cham
[135] Salim, T.; Sershen, C. L.; May, E. E., Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages, PloS One, 11, 6, e0153289 (2016)
[136] Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N.; Li, S.; Wu, Q., Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices, Environ. Model. Softw., 114, 29-39 (2019)
[137] Saltelli, A.; Annoni, P., How to avoid a perfunctory sensitivity analysis, Environ. Model. Softw., 25, 12, 1508-1517 (2010)
[138] Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S., Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 2, 259-270 (2010) · Zbl 1219.93116
[139] Saltelli, A.; Chan, K.; Scott, E., Sensitivity Analysis (2000), Wiley · Zbl 0961.62091
[140] Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S., Global Sensitivity Analysis : The Primer (2008), John Wiley · Zbl 1161.00304
[141] Saltelli, A.; Ratto, M.; Tarantola, S.; Campolongo, F., Sensitivity analysis practices: Strategies for model-based inference, Reliab. Eng. Syst. Saf., 91, 10-11, 1109-1125 (2006)
[142] Saltelli, A.; Tarantola, S., On the relative importance of input factors in mathematical models, J. Am. Stat. Assoc., 97, 459, 702-709 (2002) · Zbl 1073.62602
[143] Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M., Sensitivity Analysis in Practice (2002), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd Chichester, UK
[144] Saltelli, A.; Tarantola, S.; Chan, K. P.S., A quantitative model-independent method for global sensitivity analysis of model output, Technometrics, 41, 1, 39-56 (1999)
[145] Sanders, G. D.; Taira, A. V., Cost effectiveness of a potential vaccine for human papillomavirus, Emerg. Infect. Dis., 9, 1, 37-48 (2003)
[146] Schaibly, J. H.; Shuler, K. E., Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II applications, J. Chem. Phys., 59, 8, 3879-3888 (1973)
[147] Schmidt, H.; Jirstrand, M., Systems biology toolbox for MATLAB: a computational platform for research in systems biology, Bioinformatics, 22, 4, 514-515 (2006)
[148] Schober, P.; Boer, C.; Schwarte, L. A., Correlation coefficients: Appropriate use and interpretation, Anesth. Analg., 126, 5 (2018)
[149] Seaholm, S. K.; Ackerman, E.; Wu, S. C., Latin hypercube sampling and the sensitivity analysis of a monte carlo epidemic model, Int. J. Bio Med. Comput., 23, 1-2, 97-112 (1988)
[150] Seber, G. A.F.; Lee, A. J., Linear Regression Analysis (2003), Wiley-Interscience · Zbl 1029.62059
[151] Seber, G. A.F.; Wild, C. J., Nonlinear Regression (1989), Wiley · Zbl 0721.62062
[152] Shin, M.-J.; Guillaume, J. H.A.; Croke, B. W.; Jakeman, A. J., Addressing ten questions about conceptual rainfall runoff models with global sensitivity analyses in r, J. Hydrol., 503, 135-152 (2013)
[153] Sin, G.; Gernaey, K. V., Improving the morris method for sensitivity analysis by scaling the elementary effects, (Jezowski, J.; Thullie, J., Proceedings of the Nineteenth European Symposium on Computer Aided Process Engineering, volume 26 of Computer Aided Chemical Engineering (2009), Elsevier), 925-930
[154] Sjoblom, T.; Jones, S.; Wood, L. D.; Parsons, D. W.; Lin, J.; Barber, T. D.; Mandelker, D.; Leary, R. J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; Markowitz, S. D.; Willis, J.; Dawson, D.; Willson, J. K.V.; Gazdar, A. F.; Hartigan, J.; Wu, L.; Liu, C.; Parmigiani, G.; Park, B. H.; Bachman, K. E.; Papadopoulos, N.; Vogelstein, B.; Kinzler, K. W.; Velculescu, V. E., The consensus coding sequences of human breast and colorectal cancers, Science, 314, 5797, 268-274 (2006)
[155] Sobol, I. M., On the distribution of points in a cube and the approximate evaluation of integrals, USSR Computat. Math. Math. Phys., 7, 4, 86-112 (1967) · Zbl 0185.41103
[156] Sobol, I. M., Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp., 1, 407-414 (1993) · Zbl 1039.65505
[157] Sobol, I. M., Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Math. Comput. Simul., 55, 1-3, 271-280 (2001) · Zbl 1005.65004
[158] Sobol, I. M., Global sensitivity analysis indices for the investigation of nonlinear models, Mat. Model., 19, 11, 23-24 (2007) · Zbl 1140.60323
[159] Sobol, I. M.; Gresham, A., On an alternative global sensitivity estimators, SAMO, 40-42 (1995)
[160] Sobol, I. M.; Kucherenko, S., Derivative based global sensitivity measures and their link with global sensitivity indices, Math. Comput. Simul., 79, 10, 3009-3017 (2009) · Zbl 1167.62005
[161] Sobol, I. M.; Kucherenko, S., A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices, Comput. Phys. Commun., 181, 7, 1212-1217 (2010) · Zbl 1219.65005
[162] Sobol, I. M.; Kucherenko, S., Derivative based global sensitivity measures, Proc. Soc. Behav. Sci., 2, 6, 7745-7746 (2010)
[163] Stan, G.-B.; Michelet, C.; Fonteneau, R.; Zeggwagh, F.; Belmudes, F.; Ernst, D.; Lefebvre, M. A., Modelling the influence of activation-induced apoptosis of CD4+ and CD8+ t-cells on the immune system response of a HIV-infected patient, IET Syst. Biol., 2, 2, 94-102 (2008)
[164] Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A., Conditional variable importance for random forests, BMC Bioinformat., 9, 1, 307 (2008)
[165] Swat, M.; Kel, A.; Herzel, H., Bifurcation analysis of the regulatory modules of the mammalian g1/s transition, Bioinformatics, 20, 10, 1506-1511 (2004)
[166] Tanaka, R. J.; Ono, M., Skin disease modeling from a mathematical perspective, J. Invest. Dermatol., 133, 6, 1472-1478 (2013)
[167] Tanaka, R. J.; Ono, M.; Harrington, H. A., Skin barrier homeostasis in atopic dermatitis: Feedback regulation of kallikrein activity, PLoS ONE, 6, 5, e19895 (2011)
[168] Tarantola, S.; Becker, W., SIMLAB software for uncertainty and sensitivity analysis, Handbook of Uncertainty Quantification (2017), Springer
[169] Tarantola, S.; Becker, W.; Zeitz, D., A comparison of two sampling methods for global sensitivity analysis, Comput. Phys. Commun., 183, 5, 1061-1072 (2012) · Zbl 1264.65006
[170] Tarantola, S.; Giglioli, N.; Jesinghaus, J.; Saltelli, A., Can global sensitivity analysis steer the implementation of models for environmental assessments and decision-making?, Stoch. Environ. Res. Risk Assess. (SERRA), 16, 1, 63-76 (2002) · Zbl 1106.62353
[171] Tomasetti, C.; Vogelstein, B., Variation in cancer risk among tissues can be explained by the number of stem cell divisions, Science, 347, 6217, 78 (2015)
[172] Touzani, S.; Busby, D., Screening method using the derivative-based global sensitivity indices with application to reservoir simulator, Oil Gas Sci. Technol. Revue d’IFP Energ. nouvelles, 69, 4, 619-632 (2014)
[173] A. Trandafir, E.W. Weisstein, Quasirandom sequence. From MathWorld - A Wolfram Web Resource. [http://mathworld.wolfram.com/QuasirandomSequence.html].
[174] Turányi, T., Sensitivity analysis of complex kinetic systems. tools and applications, J. Math. Chem., 5, 3, 203-248 (1990)
[175] van Voorn, G. A.K.; Kooi, B. W., Combining bifurcation and sensitivity analysis for ecological models, Eur. Phys. J. Spec. Top., 226, 9, 2101-2118 (2017)
[176] van Werkhoven, K.; Wagener, T.; Reed, P.; Tang, Y., Characterization of watershed model behavior across a hydroclimatic gradient, Water Resour. Res., 44, 1 (2008)
[177] Villaverde, A. F.; Barreiro, A.; Papachristodoulou, A., Structural identifiability of dynamic systems biology models, PLoS Comput. Biol., 12, 10, e1005153 (2016)
[178] Voit, E.; Neves, A. R.; Santos, H., The intricate side of systems biology, Proc. Natl. Acad. Sci., 103, 25, 9452-9457 (2006)
[179] Wainwright, H. M.; Jung, Y.; Zhou, Q.; Birkholzer, J. T., Making sense of global sensitivity analyses, Comput. Geosci., 65, 84-94 (2014)
[180] Wang, J.; Li, X.; Lu, L.; Fang, F., Parameter sensitivity analysis of crop growth models based on the extended fourier amplitude sensitivity test method, Environ. Model. Softw., 48, 171-182 (2013)
[181] Wang, L. Y.; Yang, Q.; Lowry, R.; Wechsler, H., Economic analysis of a school-based obesity prevention program, Obes. Res., 11, 11, 1313-1324 (2003)
[182] Weber, F.; Theers, S.; Surmann, D.; Ligges, U.; Weihs, C., Sensitivity Analysis of Ordinary Differential Equation Models (2018), Technical University of Dortmund, Technical report
[183] Wei, T., A review of sensitivity analysis methods in building energy analysis, Renew. Sustain. Energy Rev., 20, 411-419 (2013)
[184] Wen, F.; Zheng, H.; Wu, Y.; Wheeler, J.; Zeng, X.; Fu, P.; Li, Q., Cost-effectiveness analysis of fluorouracil, leucovorin, and irinotecan versus epirubicin, cisplatin, and capecitabine in patients with advanced gastric adenocarcinoma, Sci. Rep., 6, 1, 36060 (2016)
[185] White, G. H.; Farrance, I., Uncertainty of measurement in quantitative medical testing: a laboratory implementation guide, Clin. Biochem. Rev., 25, 4, 1-24 (2004)
[186] Williamson, T.; Adiamah, D.; Schwartz, J.-M.; Stateva, L., Exploring the genetic control of glycolytic oscillations in saccharomyces cerevisiae, BMC Syst. Biol., 6, 1, 108 (2012)
[187] Wood, L. D.; Parsons, D. W.; Jones, S.; Lin, J.; Sjoblom, T.; Leary, R. J.; Shen, D.; Boca, S. M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P. A.; Kaminker, J. S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J. K.V.; Sukumar, S.; Polyak, K.; Park, B. H.; Pethiyagoda, C. L.; Pant, P. V.K.; Ballinger, D. G.; Sparks, A. B.; Hartigan, J.; Smith, D. R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S. D.; Parmigiani, G.; Kinzler, K. W.; Velculescu, V. E.; Vogelstein, B., The genomic landscapes of human breast and colorectal cancers, Science, 318, 5853, 1108-1113 (2007)
[188] Wu, J.; Dhingra, R.; Gambhir, M.; Remais, J. V., Sensitivity analysis of infectious disease models: methods, advances and their application, J. R. Soc. Interface, 10, 86, 20121018 (2013)
[189] Xu, C.; Gertner, G. Z., A general first-order global sensitivity analysis method, Reliab. Eng. Syst. Saf., 93, 7, 1060-1071 (2008)
[190] Yang, J., Convergence and uncertainty analyses in monte-carlo based sensitivity analysis, Environ. Model. Softw., 26, 4, 444-457 (2011)
[191] Yi, T.; Andrews, B. W.; Iglesias, P. A., Control analysis of bacterial chemotaxis signaling, Methods Enzymol., 422, 123-140 (2007)
[192] Zhan, C.-S.; Song, X.-M.; Xia, J.; Tong, C., An efficient integrated approach for global sensitivity analysis of hydrological model parameters, Environ. Model. Softw., 41, 39-52 (2013)
[193] Zhang, C.; Chu, J.; Fu, G., Sobol’s sensitivity analysis for a distributed hydrological model of Yichun river Basin, China, J. Hydrol., 480, 58-68 (2013)
[194] Zi, Z.; Zheng, Y.; Rundell, A. E.; Klipp, E., SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool, BMC Bioinform., 9, 1, 342 (2008)
[195] Ziehn, T.; Hughes, K. J.; Griffiths, J. F.; Porter, R.; Tomlin, A. S., A global sensitivity study of cyclohexane oxidation under low temperature fuel-rich conditions using HDMR methods, Combust. Theory Model., 13, 4, 589-605 (2009)
[196] Ziehn, T.; Tomlin, A. S., GUI-HDMR - a software tool for global sensitivity analysis of complex models, Environ. Model. Softw., 24, 775-785 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.