## Numerical solution of fractional-order ordinary differential equations using the reformulated infinite state representation.(English)Zbl 1437.65059

Summary: In this paper, we propose a novel approach for the numerical solution of fractional-order ordinary differential equations. The method is based on the infinite state representation of the Caputo fractional differential operator, in which the entire history of the state of the system is considered for correct initialization. The infinite state representation contains an improper integral with respect to frequency, expressing the history dependence of the fractional derivative. The integral generally has a weakly singular kernel, which may lead to problems in numerical computations. A reformulation of the integral generates a kernel that decays to zero at both ends of the integration interval leading to better convergence properties of the related numerical scheme. We compare our method to other schemes by considering several benchmark problems.

### MSC:

 65L03 Numerical methods for functional-differential equations 34A08 Fractional ordinary differential equations 26A33 Fractional derivatives and integrals

### Software:

Matlab; ode23; FOTF Toolbox; FDE12; Ode15s; ode23s; ode45; ML ; MATLAB ODE suite; ode113
Full Text:

### References:

 [1] D. Baffet, A Gauss-Jacobi kernel compression scheme for fractional differential equations. J. of Scientific Computing79 (2019), 227-248.; Baffet, D., A Gauss-Jacobi kernel compression scheme for fractional differential equations, J. of Scientific Computing, 79, 227-248 (2019) · Zbl 1455.65229 [2] R. L. Bagley and P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA Journal23 (1985), 918-925.; Bagley, R. L.; Torvik, P. J., Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA Journal, 23, 918-925 (1985) · Zbl 0562.73071 [3] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations. # 178, Academic Press (1985).; Burton, T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations., 178 (1985) · Zbl 0635.34001 [4] A. Chatterjee, Statistical origins of fractional derivatives in viscoelasticity. J. of Sound and Vibration284 (2005), 1239-1245.; Chatterjee, A., Statistical origins of fractional derivatives in viscoelasticity, J. of Sound and Vibration, 284, 1239-1245 (2005) [5] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd Ed. Ser. Computer Science and Applied Mathematics, Academic Press, New York (1984).; Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration (1984) · Zbl 0537.65020 [6] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Ser. Lecture Notes in Mathematics, Springer, Berlin (2010).; Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Ser. Lecture Notes in Mathematics (2010) · Zbl 1215.34001 [7] K. Diethelm, An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives. Numerical Algorithms47 (2008), 361-390.; Diethelm, K., An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives, Numerical Algorithms, 47, 361-390 (2008) · Zbl 1144.65017 [8] K. Diethelm and N. J. Ford, Multi-order fractional differential equations and their numerical solution. Applied Mathematics and Computation154 (2004), 621-640.; Diethelm, K.; Ford, N. J., Multi-order fractional differential equations and their numerical solution, Applied Mathematics and Computation, 154, 621-640 (2004) · Zbl 1060.65070 [9] K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics29 (2002), 3-22.; Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3-22 (2002) · Zbl 1009.65049 [10] K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method. Numerical Algorithms36 (2004), 31-52.; Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36, 31-52 (2004) · Zbl 1055.65098 [11] D. Elliott, An asymptotic analysis of two algorithms for certain Hadamard finite-part integrals. IMA J. of Numerical Analysis13 (1993), 445-462.; Elliott, D., An asymptotic analysis of two algorithms for certain Hadamard finite-part integrals, IMA J. of Numerical Analysis, 13, 445-462 (1993) · Zbl 0780.65014 [12] R. Garrappa, Predictor-corrector PECE method for fractional differential equations. MATLAB Central File Exchange (2012), file ID: 32918.; Garrappa, R., Predictor-corrector PECE method for fractional differential equations, MATLAB Central File Exchange (2012) · Zbl 1258.34011 [13] R. Garrappa, The Mittag-Leffler function. MATLAB Central File Exchange (2014), file ID: 48154.; Garrappa, R., The Mittag-Leffler function, MATLAB Central File Exchange (2014) · Zbl 1331.33043 [14] J. K. Hale, Theory of Functional Differential Equations, 2nd Ed. Ser. Appl. Math. Sci. # 3, Springer, N. York-Heidelberg-Berlin (1977).; Hale, J. K., Theory of Functional Differential Equations (1977) · Zbl 0352.34001 [15] N. Heymans and J. C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta33 (1994), 210-219.; Heymans, N.; Bauwens, J. C., Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheologica Acta, 33, 210-219 (1994) [16] M. Hinze, A. Schmidt and R. I. Leine, Mechanical representation and stability of dynamical systems containing fractional springpot elements. Proc. of the IDETC Quebec, Canada (2018).; Hinze, M.; Schmidt, A.; Leine, R. I., Mechanical representation and stability of dynamical systems containing fractional springpot elements, Proc. of the IDETC Quebec, Canada (2018) [17] M. Hinze, A. Schmidt and R. I. Leine, Lyapunov stability of a fractionally damped oscillator with linear (anti-)damping. Internat. J. of Nonlinear Sci. and Numer. Simul. (2019), Under review.; Hinze, M.; Schmidt, A.; Leine, R. I., Lyapunov stability of a fractionally damped oscillator with linear (anti-)damping, Internat. J. of Nonlinear Sci. and Numer. Simul. (2019) [18] S. Jiang, J. Zhang, Q. Zhang and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. in Comput. Phys. 21 (2017), 650-678.; Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. in Comput. Phys., 21, 650-678 (2017) [19] V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations. # 180, Elsevier (1986).; Kolmanovskii, V. B.; Nosov, V. R., Stability of Functional Differential Equations., 180 (1986) · Zbl 0593.34070 [20] J.-R. Li, A fast time stepping method for evaluating fractional integrals. SIAM J. on Sci. Computing31 (2010), 4696-4714.; Li, J.-R., A fast time stepping method for evaluating fractional integrals, SIAM J. on Sci. Computing, 31, 4696-4714 (2010) · Zbl 1208.26014 [21] C. F. Lorenzo and T. T. Hartley, Initialization of fractional-order operators and fractional differential equations. J. of Comput. and Nonlinear Dynamics3 (2008), 021101-1-021101-9.; Lorenzo, C. F.; Hartley, T. T., Initialization of fractional-order operators and fractional differential equations, J. of Comput. and Nonlinear Dynamics, 3, 021101-1-021101-9 (2008) [22] C. Lubich, Discretized fractional calculus. SIAM J. on Mathematical Analysis17 (1986), 704-719.; Lubich, C., Discretized fractional calculus, SIAM J. on Mathematical Analysis, 17, 704-719 (1986) · Zbl 0624.65015 [23] D. Matignon, Stability properties for generalized fractional differential systems. ESAIM: Proc. 5 (1998), 145-158.; Matignon, D., Stability properties for generalized fractional differential systems, ESAIM: Proc., 5, 145-158 (1998) · Zbl 0920.34010 [24] G. Montseny, Diffusive representation of pseudo-differential timeoperators. ESAIM: Proc. 5 (1998), 159-175.; Montseny, G., Diffusive representation of pseudo-differential timeoperators, ESAIM: Proc., 5, 159-175 (1998) · Zbl 0916.93022 [25] A. Oustaloup, La Dérivation Non Entière: Théorie, Synthèse et Applications. Hermès, Paris (1995).; Oustaloup, A., La Dérivation Non Entière: Théeorie, Synthèse et Applications. (1995) · Zbl 0864.93004 [26] K. D. Papoulia, V. P. Panoskaltsis, N. V. Kurup and I. Korovajchuk, Rheological representation of fractional order viscoelastic material models. Rheologica Acta49 (2010), 381-400.; Papoulia, K. D.; Panoskaltsis, V. P.; Kurup, N. V.; Korovajchuk, I., Rheological representation of fractional order viscoelastic material models, Rheologica Acta, 49, 381-400 (2010) [27] I. Podlubny, Fractional Differential Equations. Ser. Mathematics in Science and Engineering Vol. 198, Academic Press, San Diego (1999).; Podlubny, I., Fractional Differential Equations. Ser. Mathematics in Science and Engineering, 198 (1999) [28] H. Schiessel and A. Blumen, Hierarchical analogues to fractional relaxation equations. J. of Phys. A: Mathematical and General26 (1993), 5057-5069.; Schiessel, H.; Blumen, A., Hierarchical analogues to fractional relaxation equations, J. of Phys. A: Mathematical and General, 26, 5057-5069 (1993) · Zbl 1046.82039 [29] A. Schmidt and L. Gaul, On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems. Mechanics Research Commun. 33 (2006), 99-107.; Schmidt, A.; Gaul, L., On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems, Mechanics Research Commun., 33, 99-107 (2006) · Zbl 1192.74153 [30] A. Schmidt and L. Gaul, Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dynamics29 (2002), 37-55.; Schmidt, A.; Gaul, L., Finite element formulation of viscoelastic constitutive equations using fractional time derivatives, Nonlinear Dynamics, 29, 37-55 (2002) · Zbl 1028.74013 [31] L. Shampine and M. Reichelt, The MATLAB ODE Suite. SIAM J. on Sci. Computing18 (1997), 1-22.; Shampine, L.; Reichelt, M., The MATLAB ODE Suite, SIAM J. on Sci. Computing, 18, 1-22 (1997) · Zbl 0868.65040 [32] S. J. Singh and A. Chatterjee, Galerkin projections and finite elements for fractional order derivatives. Nonlinear Dynamics45 (2006), 183- 206.; Singh, S. J.; Chatterjee, A., Galerkin projections and finite elements for fractional order derivatives, Nonlinear Dynamics, 45, 183-206 (2006) · Zbl 1101.65119 [33] J.-C. Trigeassou, N. Maamri, J. Sabatier and A. Oustaloup, State variables and transients of fractional order differential systems. Computers and Math. with Appl. 64 (2012), 3117-3140 (SI: Advances in FDE, III).; Trigeassou, J.-C.; Maamri, N.; Sabatier, J.; Oustaloup, A., State variables and transients of fractional order differential systems, Computers and Math. with Appl., 64, 3117-3140 (2012) · Zbl 1268.93040 [34] J.-C. Trigeassou, N. Maamri, J. Sabatier and A. Oustaloup, A Lyapunov approach to the stability of fractional differential equations. Signal Processing91 (2011), 437-445.; Trigeassou, J.-C.; Maamri, N.; Sabatier, J.; Oustaloup, A., A Lyapunov approach to the stability of fractional differential equations, Signal Processing, 91, 437-445 (2011) · Zbl 1203.94059 [35] J.-C. Trigeassou, N. Maamri, J. Sabatier and A. Oustaloup, Transients of fractional-order integrator and derivatives. Signal, Image and Video Processing6 (2012), 359-372.; Trigeassou, J.-C.; Maamri, N.; Sabatier, J.; Oustaloup, A., Transients of fractional-order integrator and derivatives, Signal, Image and Video Processing, 6, 359-372 (2012) · Zbl 1203.94059 [36] Y. Wei, P. W. Tse, B. Du and Y. Wang, An innovative fixed-pole numerical approximation for fractional order systems. ISA Trans. 62 (2016), 94-102 (SI: Control of Renewable Energy Systems).; Wei, Y.; Tse, P. W.; Du, B.; Wang, Y., An innovative fixed-pole numerical approximation for fractional order systems, ISA Trans., 62, 94-102 (2016) [37] D. Xue, Fractional-order Control Systems - Fundamentals and Numerical Implementations. Ser. Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Berlin (2017).; Xue, D., Fractional-order Control Systems - Fundamentals and Numerical Implementations. Ser. Fractional Calculus in Applied Sciences and Engineering (2017) · Zbl 1406.33001 [38] D. Xue and L. Bai, Benchmark problems for Caputo fractional-order ordinary differential equations. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1305-1312; .; Xue, D.; Bai, L., Benchmark problems for Caputo fractional-order ordinary differential equations, Fract. Calc. Appl. Anal., 20, 5, 1305-1312 (2017) · Zbl 1377.65086 [39] L. Yuan and O. P. Agrawal, A numerical scheme for dynamic systems containing fractional derivatives. J. of Vibration and Acoustics124 (2002), 321-324.; Yuan, L.; Agrawal, O. P., A numerical scheme for dynamic systems containing fractional derivatives, J. of Vibration and Acoustics, 124, 321-324 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.